精英家教网 > 高中数学 > 题目详情

(选修4-1:几何证明选讲)如图,已知在△ABC中,∠B=90°.O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,AD=2,AE=1,则CD的长为________.

3
分析:利用圆的切线性质、切割线定理、勾股定理即可得出.
解答:由AD与圆O相切于点D,根据切割线定理可得AD2=AE•AB,又AD=2,AE=1,∴
由CD,CB都是圆O的切线,根据切线长定理可得,设CD=x,则CB=x.
由切线的性质可得:AB⊥BC,
∴AB2+BC2=AC2,∴42+x2=(x+2)2,得x=3,即CD=3.
故答案为3.
点评:熟练掌握圆的切线性质、切割线定理、勾股定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•辽宁)选修4-1:几何证明选讲
如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连接DB并延长交⊙O于点E.证明:
(Ⅰ)AC•BD=AD•AB;
(Ⅱ)AC=AE.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.
(1)求证:FB=FC;
(2)若AB是△ABC外接圆的直径,∠EAC=120°,BC=6,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
如图,圆O为△ABC的外接圆,且AB=AC,过点A的直线交圆O于点D,交BC的延长线于点F,DE是BD的延长线,连接CD.
(Ⅰ)求证:∠EDF=∠CDF;
(Ⅱ)求证:AB2=AF•AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
如图设M为线段AB中点,AE与BD交于点C∠DME=∠A=∠B=α,且DM交AC于F,EM交BD于G.
(1)写出图中三对相似三角形,并对其中一对作出证明;
(2)连接FG,设α=45°,AB=4
2
,AF=3,求FG长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏三模)选修4-1:几何证明选讲
如图,半径分别为R,r(R>r>0)的两圆⊙O,⊙O1内切于点T,P是外圆⊙O上任意一点,连PT交⊙O1于点M,PN与内圆⊙O1相切,切点为N.求证:PN:PM为定值.

查看答案和解析>>

同步练习册答案