精英家教网 > 高中数学 > 题目详情
(2012•辽宁)选修4-1:几何证明选讲
如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连接DB并延长交⊙O于点E.证明:
(Ⅰ)AC•BD=AD•AB;
(Ⅱ)AC=AE.
分析:(Ⅰ)先由AC与⊙O′相切于A,得∠CAB=∠ADB,同理得到∠ACB=∠DAB,即可得到△ACB∽△DAB,进而得到结论;
(Ⅱ)由AD与⊙O相切于A,得∠AED=∠BDA,再结合∠ADE=∠BDA,得到△EAD∽△ABD,最后结合第一问的结论即可得到 AC=AE成立.
解答:证明:(Ⅰ)由AC与⊙O′相切于A,
得∠CAB=∠ADB,
同理∠ACB=∠DAB,
所以△ACB∽△DAB,
从而
AC
AD
=
AB
BD

即 AC•BD=AD•AB.
(Ⅱ)由AD与⊙O相切于A,
得∠AED=∠BDA,
又∠ADE=∠BDA,
得△EAD∽△ABD,
从而
AE
AB
=
AD
BD
,即AE•BD=AD•AB.
结合(Ⅰ)的结论,AC=AE.
点评:本题主要考查与圆有关的比例线段、相似三角形的判定及切线性质的应用.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•辽宁)选修4-5:不等式选讲
已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|-2≤x≤1}.
(Ⅰ)求a的值;
(Ⅱ)若|f(x)-2f(
x2
)|≤k
恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁模拟)选修4-1:几何证明选讲
已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.
(Ⅰ)求证:AC平分∠BAD;
(Ⅱ)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁)选修4-1:几何证明选讲
如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C、D两点,连接DB并延长交⊙O于点E.证明:
(Ⅰ)AC•BD=AD•AB;
(Ⅱ)AC=AE.

查看答案和解析>>

同步练习册答案