精英家教网 > 高中数学 > 题目详情
今年双十一,淘宝网站一天的销售记录震惊全球,网购已经成为人们消费的主要形式之一.假设一淘宝网店出售某商品,根据人们的咨询量预估成交额y(千元)与售价x(千元)之间满足关系y=ax2-lnx+2(x∈(0,1))(a>
1
2e
)
,而由于价格原因未能交易成功的成交额m(千元)与售价x(千元)之间满足关系m=x,记实际成交额为f(x).
(1)若发现该商品的实际成交额一直下降,求此时a的取值范围;
(2)证明:只要实际成交额能出现上升趋势,则实际成交额一定不会小于2(千元).
考点:导数在最大值、最小值问题中的应用
专题:综合题,导数的综合应用
分析:(1)求导数,该商品的实际成交额一直下降,f′(x)<0,即2ax2-x-1<0对任意x∈(0,1)恒成立,分离参数求最值,即可确定a的取值范围;
(2)由题意,f′(x)>0在x∈(0,1)上有解,设为x0,确定x=x0,函数取得极小值f(x0)=
1-x0
2
-lnx0+2,即可证明结论.
解答: (1)解:由题意,f(x)=ax2-lnx-x+2,则f′(x)=
2ax2-x-1
x

∵该商品的实际成交额一直下降,
∴f′(x)<0,即2ax2-x-1<0对任意x∈(0,1)恒成立,
∴a<
1
2
1
x2
+
1
x
)恒成立,
1
x
∈(1,+∞),
1
x2
+
1
x
>2,
∴a≤1,
1
2e
<a≤1;
(2)证明:由题意,f′(x)>0在x∈(0,1)上有解,设为x0,∴a>1,
∴2ax02-x0-1=0,且x∈(0,x0),f′(x)<0,(x0,1),f′(x)>0,
∴x=x0,函数取得极小值f(x0)=
1-x0
2
-lnx0+2,
∵x∈(0,1),
1-x0
2
-lnx0+2>2,
∴实际成交额一定不会小于2(千元).
点评:本题考查利用数学知识解决实际问题,考查导数知识的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的方程lnx=mx,x∈(0,a),若存在a,m,使此方程有两个不同的实数解,则称实数对(a,m)为此方程的“D-S-P”,则在(
1
2
,-
1
e
),(
e
1
3
e
),(2e,
2ln2
e
),(e2
5
2e2
)中,“D-S-P”点有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+ln
ax+1
2
(a>0)

(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若对任意a∈(1,2),总存在x0∈[
1
2
,1]
,使不等式f(x0)>k(1-a2)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln
x
a
,g(x)=
x-a
ax
,a>0.
(1)若曲线y=f(x)在(1,f(1))处的切线方程为x-y-1=0,求a的值;
(2)证明:当x>a时,f(x)的图象始终在g(x)的图象的下方;
(3)当a=1时,设曲线C:h(x)=f(x)-e[1+
x
•g(x)](e为自然对数的底数),h′(x)表示h(x)的导函数,求证:对于曲线C上的不同两点A(x1,y1),B(x2,y2),x1<x2,存在唯一的x0∈(x1,x2),使直线AB的斜率等于h′(x0).

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱A1B1C1-ABC中,A1A⊥平面ABC,A1A=AB=AC=2,BC=2
2
,点D是BC的中点.
(Ⅰ)求证:A1B∥平面AC1D
(Ⅱ)在棱BC上是否存在一点P,使平面APC1与平面A1AB所成二面角(锐角)的余弦值为
3
3
?若存在,确定P的位置,并证明之;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2,g(x)=elnx.
(Ⅰ)设函数F(x)=f(x)-g(x),求F(x)的单调区间;
(Ⅱ)若存在常数k,m,使得f(x)≥kx+m,对x∈R恒成立,且g(x)≤kx+m,对x∈(0,+∞)恒成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”,试问:f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盒子中装有四张卡片,每张卡片上写有一个数字,数字分别是1,2,3,4.现在从盒子中随机抽取卡片.
(Ⅰ)若以此抽取三张卡片,求抽取的三张卡片上数字之和大于6的概率;
(Ⅱ)若第一次抽取一张卡片,放回后在抽取一张卡片,求两次抽取中至少一次抽到数字3的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=y,直线l与抛物线C交于A、B不同两点,且
OA
+
OB
=(p,6).
(1)求抛物线的焦点坐标和准线方程;
(2)设直线m为线段AB的中垂线,请判断直线m是否恒过定点?若是,请求出定点坐标;若不是,请说明理由;
(3)记点A、B在x轴上的射影分别为A1、B1,记曲线E是以A1B1为直径的圆,当直线l与曲线E的相离时,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

中心在原点,焦点在x轴上的双曲线的一条渐近线为y=
3
4
x,焦点到渐近线的距离为3,则该双曲线的方程为
 

查看答案和解析>>

同步练习册答案