精英家教网 > 高中数学 > 题目详情
4.若$\underset{lim}{△x→∞}$$\frac{f({x}_{0})-f({x}_{0}+3△x)}{2△x}$=1,则f′(x0)等于(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.-$\frac{3}{2}$D.-$\frac{2}{3}$

分析 根据导数的定义进行转化即可.

解答 解:$\underset{lim}{△x→∞}$$\frac{f({x}_{0})-f({x}_{0}+3△x)}{2△x}$=-$\frac{3}{2}$$\underset{lim}{△x→∞}$$\frac{f({x}_{0}+3△x)-f({x}_{0})}{3△x}$=-$\frac{3}{2}$f′(x0)=1,
∴f′(x0)=-$\frac{3}{2}$,
故选:C.

点评 本题考查了变化的快慢与变化率,考查了导数的概念及其运算,关键是对导数概念的理解,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设a>0且a≠1,函数f(x)=loga(x-2a)+loga(x-3a)的定义域为[a+3,a+4].
(1)讨论函数f(x)的单凋性;
(2)若f(x)≤1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}满足a1=3,an+1=3an+3n+1,数列{bn}满足bn=$\frac{10\sqrt{3}-n}{n}$an,存在m∈N*,使得对任意的n∈N*,不等式bn≤bm恒成立,则m的值是16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2,g(x)=ax+1,a∈R.
(1)求函数h(x)=$\frac{g(x)}{f(x)}$在[1,2]上的最小值为-$\frac{1}{2}$,求实数a的值;
(2)若任意的1≤x1<x2≤2,不等式f(x1)-f(x2)<|g(x1)|-|g(x2)|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教,现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有90种不同的分派方法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知sinα=$\frac{\sqrt{5}}{5}$,且0<α<$\frac{π}{2}$,tanβ=-3,且$\frac{π}{2}$<β<π,则α+β的值为(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若可导函数f(x)满足f′(3)=9,则f(3x2)在x=1处的导数值为(  )
A.1B.9C.27D.54

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义在R上的函数f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,已知an=f($\frac{1}{n}$)+f($\frac{2}{n}$)+…f($\frac{n-1}{n}$)(n≥2),an=$\frac{n-1}{2}$(n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数y=(a2-1)x在R上是减函数,则有(  )
A.|a|<1B.1<|a|<2C.1<|a|<$\sqrt{2}$D.|a|>$\sqrt{2}$

查看答案和解析>>

同步练习册答案