精英家教网 > 高中数学 > 题目详情
(本小题共13分)
某公司要将一批海鲜用汽车运往A城,如果能按约定日期送到,则公司可获得销售收入30万元,每提前一天送到,或多获得1万元,每迟到一天送到,将少获得1万元,为保证海鲜新鲜,汽车只能在约定日期的前两天出发,且行驶路线只能选择公路1或公路2中的一条,运费由公司承担,其他信息如表所示.
   统计信息
汽车行驶
路线
不堵车的情况下到达所需时间(天)
堵车的情况下到达所需时间(天)
堵车的概率
运费(万元)
公路1
2
3

1.6
公路2
1
4

0.8
  (I)记汽车走公路1时公司获得的毛利润为(万元),求的分布列和数学期望
(II)假设你是公司的决策者,你选择哪条公路运送海鲜有可能获得的毛利润更多?
(注:毛利润=销售收入-运费)
(I)分布列见解析;万元
(II)选择公路2可能获利更多
(I)汽车走公路1时不堵车时获得的毛利润万元
堵车时公司获得的毛利润万元
∴汽车走公路1时获得的毛利润的分布列为

28.4
27.4
P


 
万元     …………6分
(II)设汽车走公路2时获得的毛利润为万元
不堵车时获得的毛利润万元
堵车时的毛利润万元
∴汽车走公路2时获得的毛利润的分布列为

30.2
27.2
P


 
万元

∴选择公路2可能获利更多.             …………13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

从初三年级8个班选出10名优秀学生保送本校高中,每班至少1名,其中1班恰好有3人的概率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
从某校高三年级800名男生中随机抽取50名学生测量其身高,据测量被测学生的身高全部在155cm到195cm之间.将测量结果按如下方式分成8组:第一组[155,160),第二组[160,165),……,第八组[190,195],如下图是按上述分组得到的频率分布直方图的一部分.已知:第1组与第8组的人数相同,第6组、第7组和第8组的人数依次成等差数列.
⑴求下列频率分布表中所标字母的值,并补充完成频率分布直方图;
分组
频数
频率
频率/组距




[180,185)


z
[185,190)
m
n
p





⑵若从身高属于第6组和第8组的所有男生中随机的抽取2名男生,记他们的身高分别为x、y,求满足:|x-y|≤ 5事件的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
为预防病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:
 
A组
B组
C组
疫苗有效
673


疫苗无效
77
90

已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(1)求的值;
(2)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个?
(3)已知,求不能通过测试的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

连续做某种试验,结果或成功或失败,已知当第次成功,则第次也成功的概率为,当第次失败,则第次成功的概率为,若首次试验成功和失败的概率都是,求第次试验成功的概率

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮. 现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是.两人共投篮3次,且第一次由甲开始投篮. 假设每人每次投篮命中与否均互不影响.
(Ⅰ)求3次投篮的人依次是甲、甲、乙的概率;
(Ⅱ)若投篮命中一次得1分,否则得0分. 用ξ表示甲的总得分,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5. 若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6. 实施每种方案,第二年与第一年相互独立。令表示方案实施两年后柑桔产量达到灾前产量的倍数。
(1)写出的分布列;
(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
(3)不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某超市为了响应环保要求,鼓励顾客自带购物袋到超市购物,采取了如下措施:对不使用超市塑料购物袋的顾客,超市给予0.96折优惠;对需要超市塑料购物袋的顾客,既要付购买费,也不享受折扣优惠.假设该超市在某个时段内购物的人数为36人,其中有12位顾客自己带了购物袋,现从这36人中随机抽取2人.
(Ⅰ)求这2人都享受折扣优惠或都不享受折扣优惠的概率;
(Ⅱ)设这2人中享受折扣优惠的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法正确的是  (  )
A.如果一事件发生的概率为十万分之一,说明此事件不可能发生
B.如果一事件不是不可能事件,说明此事件是必然事件
C.概率的大小与不确定事件有关
D.如果一事件发生的概率为99.999%,说明此事件必然发生

查看答案和解析>>

同步练习册答案