精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
kx+2,x≤0
1nx,x>0
(k∈R),若函数y=|f(x)|+k有三个零点,则实数k的取值范围是(  )
A.k≤2B.-1<k<0C.-2≤k<-1D.k≤-2
由y=|f(x)|+k=0得|f(x)|=-k≥0,所以k≤0,作出函数y=|f(x)|的图象,
由图象可知:要使y=-k与函数y=|f(x)|有三个交点,
则有-k≥2,即k≤-2,
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+mx+n有两个零点-1与3
(1)求出函数f(x)的解析式,并指出函数f(x)的单调递增区间;
(2)若g(x)=f(|x|)对任意x1,x2∈[t,t+1],且x1≠x2,都有
g(x1)-g(x2)
x1-x2
>0
成立,试求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=
x+2,0≤x<1
2x+
1
2
,x≥1.
若a>b≥0,且f(a)=f(b),则bf(a)的取值范围是(  )
A.[
5
4
,3)
B.[
5
2
,3)
C.[
1
2
,3)
D.[1,3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=mx2+3(m-4)x-9,m为常数.判断函数f(x)是否存在零点,若存在,指出存在几个,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于实数a和b,定义运算“*”:a*b=
a2-ab,a≤b
b2-ab,a>b
设f(x)=(2x-1)*(x-1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面直角坐标系中,抛物线y2=
1
2
x
与函数y=lnx图象的交点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=2x+log2x的零点在区间(  )内.
A.(
1
4
1
3
)
B.(
1
3
2
5
)
C.(
2
5
1
2
)
D.(
1
2
2
3
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程
x-1
lg(x2+y2-1)=0
所表示的曲线图形是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
2x+1
+m,m∈R.
(1)若m=-
1
2
,求证:函数f(x)是R上的奇函数;
(2)若函数f(x)在区间(1,2)上没有零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案