精英家教网 > 高中数学 > 题目详情
已知O是锐角△ABC的外接圆圆心,∠A=θ,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
,则m=______.(用θ表示)
取AB中点D,则有
AO
=
AD
+
DO

代入
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
得:
cosB
sinC
AB
+
cosC
sinB
AC
=2m(
AD
+
DO
)

OD
AB
,得
DO
AB
=0,
∴两边同乘
AB
,化简得:
cosB
sinC
AB
AB
+
cosC
sinB
AC
AB
=2m(
AD
+
DO
)•
AB
=m
AB
AB

cosB
sinC
c2+
cosC
sinB
bc•cosA=mc2

由正弦定理
a
sinA
=
b
sinB
=
c
sinC
化简得:
cosB
sinC
sin2C+
cosC
sinB
sinBsinCcosA=msin2
C,
由sinC≠0,两边同时除以sinC得:cosB+cosAcosC=msinC,
∴m=
cosB+cosAcosC
sinC
=
-cos(A+C)+cosAcosC
sinC

=
-cosAcosC+sinAsinC+cosAcosC
sinC
=sinA,
又∠A=θ,
则m=sinθ.
故答案为:sinθ

精英家教网
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O是锐角△ABC的外心,AB=6,AC=10,若
AO
=x
AB
+y
AC
,且2x+10y=5,则
AB
AC
=
20
20

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁一模)已知O是锐角△ABC的外接圆圆心,∠A=θ,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
,则m=
sinθ
sinθ
.(用θ表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O是锐角△ABC的外接圆的圆心,且∠A=
π
4
,其外接圆半径为R,若
cosB
c
AB
+
cosC
b
AC
=
1
2R
AO
,则m=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O是锐角△ABC的外接圆圆心,
.
AB
 
  
.
=16,
.
AC
 
  
.
=10
2
,若
AO
=x
AB
+y
AC
,且32x+25y=25,则
.
AO
 
  
.
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O是锐角△ABC的外接圆圆心,tanA=
2
2
,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
,则m=
 

查看答案和解析>>

同步练习册答案