精英家教网 > 高中数学 > 题目详情
已知函数为常数)
(1)若f(x)在(x1,x2)上单调递减,在(-∞,x1)和(x2,+∞)上单调递增,且x2-x1>1,求证:p2>2(p+2q);
(2)若f(x)在x=1和x=3处取得极值,且在x∈[-6,6]时,函数y=f(x)的图象在直线l:15x-y+c=0的下方,求c的取值范围?
【答案】分析:(1)先求出函数f(x)的导数,根据题意可知x1,x2是导函数所对应方程的两个根,将条件x2-x1>1转化成(x2-x12>1,然后利用根数系数的关系建立不等关系,化简即可证得结论;
(2)先根据f(x)在x=1和x=3处取得极值,求出f(x)的解析式,令F(x)=f(x)-(15x+c),求出F(x)的极值,
将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,使F(x)的最大值小于零即可求出c的取值范围.
解答:解:(1)∵,∴
又x1,x2是函数f(x)的两个极值点,则x1,x2是x2+(p-1)x+q=0的两根,
∴x1+x2=1-p,x1x2=q(2分)
∴(x1-x22=(x1+x22-4x1x2=(1-p)2-4q,(4分)
∵x2-x1>1,∴(x2-x12>1,∴(1-p)2-4q>1
即p2-2p-4q>0,∴p2>2(p+2q)
(2)由题意,
(7分)

令F(x)=f(x)-(15x+c)=,∴F'(x)=x2-4x-12
令F′(x)=0,∴x2-4x-12=0∴x1=-2,x2=6
当x∈(-6,-2)时,F′(x)>0,F(x)在[-6,-2]上递增,
当x∈(-2,6)时,F′(x)<0,F(x)在[-2,6]上递减

令F(-2)<0,即,∴(11分)
∴所求c的取值范围为(12分)
点评:本题主要考查了利用导数研究函数的极值,以及利用导数研究函数的单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年四川省资阳外国语实验学校高三适应性考试数学试卷(解析版) 题型:解答题

已知函数为常数)
(1)若f(x)在(x1,x2)上单调递减,在(-∞,x1)和(x2,+∞)上单调递增,且x2-x1>1,求证:p2>2(p+2q);
(2)若f(x)在x=1和x=3处取得极值,且在x∈[-6,6]时,函数y=f(x)的图象在直线l:15x-y+c=0的下方,求c的取值范围?

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省五校联盟高三下学期第一次联考理科数学试卷(解析版) 题型:解答题

已知函数 为常数,

(1)当时,求函数处的切线方程;

(2)当处取得极值时,若关于的方程上恰有两个不相等的实数根,求实数的取值范围;

(3)若对任意的,总存在,使不等式成立,求实数的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省数学选修1-2模块考试数学试卷(解析版) 题型:解答题

已知函数为常数)

(1)若上单调递增,且

(2)若f(x)在x=1和x=3处取得极值,且在x∈[-6,6]时,函数的图象在直线

的下方,求c的取值范围.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数为常数。

(1)若的单调性;

(2)若

查看答案和解析>>

同步练习册答案