如图,在直三棱柱ABC—A1B1C1中, ,直线B1C与平面ABC成45°角.
(1)求证:平面A1B1C⊥平面B1BCC1;
(2)求二面角A—B1C—B的余弦值.
(1)参考解析;(2)
解析试题分析:(1)要证明平面⊥平面,从图形中确定证明垂直于平面.从而要在平面中找到两条相交直线与垂直.显然.通过计算可得直线.所以可得直线与平面垂直.
(2)要求二面角A—B1C—B的余弦值,要找的这二面角的平面角.通过计算可得是等边三角形,并且是等腰直角三角形.所以只要取的中点O.即可得角AOB为所求的二面角的平面角.应用余弦定理即可求得.
试题解析:(1)证:∵BB1⊥面ABC
∴B1C与面ABC所成的角为∠B1CB
∴∠B1CB=450
∵BB1=1
∴BC=1
又∵BA=1,AC=
∴AB2+BC2=AC2
∴AB⊥BC
∵BB1⊥AB
BB1∩BC=B
∴AB⊥面B1BCC1
∵A1B1//AB
∴A1B1⊥面B1BCC1.∵A1B1面A1B1C
∴面A1B1C⊥面B1BCC1
(2)因为直角三角形中,.所以.所以为等边三角形.又因为为等腰三角形.所以取得中点O,连结AO,BO,则所以为二面角A--B的平面角.因为直角三角形中. .在等边三角形中. .所以在三角形中.
考点:1.面面垂直的判定定理.2.求二面角.
科目:高中数学 来源: 题型:解答题
如图,平面,是矩形,,点是的中点,点是边上的动点.
(Ⅰ)求三棱锥的体积;
(Ⅱ)当点为的中点时,试判断与平面的位置关系,并说明理由;
(Ⅲ)证明:无论点在边的何处,都有.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知AB为圆O的直径,点D为线段AB上一点,且,点C为圆O上一点,且.点P在圆O所在平面上的正投影为点D,PD=DB.
(1)求证:平面;
(2)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为的中点.
(Ⅰ)求与底面所成角的大小;
(Ⅱ)求证:平面;(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图四棱锥中,底面是平行四边形,平面,垂足为,在上且,,,是的中点,四面体的体积为.
(1)求过点P,C,B,G四点的球的表面积;
(2)求直线到平面所成角的正弦值;
(3)在棱上是否存在一点,使,若存在,确定点的位置,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com