精英家教网 > 高中数学 > 题目详情

如图,平面是矩形,,点的中点,点是边上的动点.

(Ⅰ)求三棱锥的体积;
(Ⅱ)当点的中点时,试判断与平面的位置关系,并说明理由;
(Ⅲ)证明:无论点在边的何处,都有.

(Ⅰ);(Ⅱ)平面平行;(Ⅲ)证明见解析.

解析试题分析:﹙Ⅰ﹚将为高,为底面可根据条件直接求得体积;(Ⅱ)根据三角形的中位线的性质及线面平行的判定性质易判断的中点时,有平面平行;(Ⅲ)根据条件只须证明平面,进而转化为证明即可,
试题解析:(Ⅰ)解:∵⊥平面为矩形,

(Ⅱ)平面平行.
中点时,的中点,∴
平面平面,∴平面
(Ⅲ)证明:∵的中点,∴
平面,∴
,∴平面
平面,∴
,∴平面
因无论点在边的何处,都有平面,∴
考点:1、线面垂直;2、线面平行;3、线线垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2ADADA1B1,∠BAD=60°.
 
(1)证明:AA1BD
(2)证明:CC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在几何体中,点在平面ABC内的正投影分别为A,B,C,且,E为中点,

(1)求证;CE∥平面
(2)求证:求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,分别为的中点.

(1)求证:EF∥平面;
(2)若平面平面,且º,求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=.

(Ⅰ)若M为PA中点,求证:AC∥平面MDE;
(Ⅱ)求平面PAD与PBC所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正三棱柱中,分别为的中点.

(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:长方形所在平面与正所在平面互相垂直,分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点 
的位置,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥,底面为平行四边形,侧面底面.已知为线段的中点.

(Ⅰ)求证:平面
(Ⅱ)求面与面所成二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC—A1B1C1中, ,直线B1C与平面ABC成45°角.

(1)求证:平面A1B1C⊥平面B1BCC1
(2)求二面角A—B1C—B的余弦值.

查看答案和解析>>

同步练习册答案