精英家教网 > 高中数学 > 题目详情

如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2ADADA1B1,∠BAD=60°.
 
(1)证明:AA1BD
(2)证明:CC1∥平面A1BD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱锥P-ABC中,△PAC,△ABC分别是以A、B为直角顶点的等腰直角三角形,AB=1.现给出三个条件:①PB=;②PB⊥BC;③平面PAB⊥平面ABC.试从中任意选取一个作为已知条件,并证明:PA⊥平面ABC;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥PABCD中,PA⊥平面ABCD,△ABC是正三角形,ACBD的交点M恰好是AC的中点,又∠CAD=30°,PAAB=4,点N在线段PB上,且.

(1)求证:BDPC
(2)求证:MN∥平面PDC
(3)设平面PAB∩平面PCDl,试问直线l是否与直线CD平行,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
 
(1)求证:平面PAC⊥平面PBC
(2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体ABCDA1B1C1D1中,底面A1B1C1D1是正方形,OBD的中点,E是棱AA1上任意一点.

(1)证明:BDEC1
(2)如果AB=2,AEOEEC1,求AA1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为矩形,底面分别是中点.

(1)求证:平面
(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形ABCD为正方形,为直角三角形,,且.

(1)证明:平面平面
(2)若AB=2AE,求异面直线BE与AC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在矩形中,点为边上的点,点为边的中点,,现将沿边折至位置,且平面平面.

(1) 求证:平面平面
(2) 求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面是矩形,,点的中点,点是边上的动点.

(Ⅰ)求三棱锥的体积;
(Ⅱ)当点的中点时,试判断与平面的位置关系,并说明理由;
(Ⅲ)证明:无论点在边的何处,都有.

查看答案和解析>>

同步练习册答案