在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC的中点,又∠CAD=30°,PA=AB=4,点N在线段PB上,且=.
(1)求证:BD⊥PC;
(2)求证:MN∥平面PDC;
(3)设平面PAB∩平面PCD=l,试问直线l是否与直线CD平行,请说明理由.
科目:高中数学 来源: 题型:解答题
如图所示,四棱锥PABCD的底面为正方形,侧棱PA⊥底面ABCD,且PA=AD=2,E,F,H分别是线段PA,PD,AB的中点.
(1)求证:PB∥平面EFH;
(2)求证:PD⊥平面AHF.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
正三棱柱ABCA1B1C1中,已知AB=A1A,D为C1C的中点,O为A1B与AB1的交点.
(1)求证:AB1⊥平面A1BD;
(2)若点E为AO的中点,求证:EC∥平面A1BD.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,点M在AD1上移动,点N在BD上移动,D1M=DN=a(0<a<),连接MN.
(1)证明对任意a∈(0,),总有MN∥平面DCC1D1.
(2)当a为何值时,MN的长最小?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,三棱柱ABC-A1B1C1的侧棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中点,F是AB的中点,AC=BC=1,AA1=2.
(1)求证:CF∥平面AB1E;
(2)求三棱锥C-AB1E在底面AB1E上的高.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱ABCA1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点,
(1)求证:MN∥平面AA1C1C;
(2)若AC=AA1,求证:MN⊥平面A1BC.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,中,平面外一条线段AB满足AB∥DE,AB,AB⊥AC,F是CD的中点.
(1)求证:AF∥平面BCE
(2)若AC=AD,证明:AF⊥平面
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°.
(1)证明:AA1⊥BD;
(2)证明:CC1∥平面A1BD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com