精英家教网 > 高中数学 > 题目详情

如图,在几何体中,点在平面ABC内的正投影分别为A,B,C,且,E为中点,

(1)求证;CE∥平面
(2)求证:求二面角的大小.

(1)详见解析;(2).

解析试题分析:(1)通过证明线线平行,证明线面平行,所以取的中点,连接,通过证明,从而证明;(2)首先建立空间直角坐标系,分别求出平面与平面的法相量,即利用,求出,利用,求出,然后利用公式注意由实际图像看为钝二面角,从而求出二面角的大小.考察内容比较基础,证明时严格按照判定定理,逻辑性严谨.
试题解析:(1)由题意知:


                         1分
中点,连,中点,

四边形为平行四边形
                              4分
,
                        5分
(2)由题知分别以所在直线为轴,轴,轴建立如图所示空间直角坐标系.
,
   
设平面法相量;则
,令,得
设平面法相量;则
,令,则         10分

由图知二面角为钝角
所以二面角的大小为
考点:1.线面平行的判定定理;2.向量法求二面角的大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在四棱锥PABCD中,PA⊥平面ABCD,△ABC是正三角形,ACBD的交点M恰好是AC的中点,又∠CAD=30°,PAAB=4,点N在线段PB上,且.

(1)求证:BDPC
(2)求证:MN∥平面PDC
(3)设平面PAB∩平面PCDl,试问直线l是否与直线CD平行,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形ABCD为正方形,为直角三角形,,且.

(1)证明:平面平面
(2)若AB=2AE,求异面直线BE与AC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在矩形中,点为边上的点,点为边的中点,,现将沿边折至位置,且平面平面.

(1) 求证:平面平面
(2) 求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥S—ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°。

(1)求证:平面MAP⊥平面SAC。
(2)求二面角M—AC—B的平面角的正切值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为的正方形,,且

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)棱上是否存在一点,使直线与平面所成的角是?若存在,求的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在底面为平行四边形的四棱柱中,底面,,,

(Ⅰ)求证:平面平面
(Ⅱ)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面是矩形,,点的中点,点是边上的动点.

(Ⅰ)求三棱锥的体积;
(Ⅱ)当点的中点时,试判断与平面的位置关系,并说明理由;
(Ⅲ)证明:无论点在边的何处,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,⊥平面

(1)求证:
(2)求二面角的大小.

查看答案和解析>>

同步练习册答案