精英家教网 > 高中数学 > 题目详情
已知关于x的方程log22x+2mlog2x+2-m=0的两根均大于1,则实数a的取值范围是  ______.
令t=log2x,则有:t>0.
则方程变换成t2+2mt+2-m=0,设其两个根x1,x2
则x1+x2=-2m>0,x1x2=2-m>0,且△≥0
解得:-1≤m<0,
故实数m的取值范围是[-1,0).
故答案为:[-1,0).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、已知函数f(x)=|log2|x-1||,且关于x的方程[f(x)]2+af(x)+2b=0有6个不同的实数解,若最小的实数解为-1,则a+b的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①在函数y=cos(x-
π
4
)cos(x+
π
4
)的图象中,相邻两个对称中心的距离为π;
②函数y=log2|3x-m|的图象关于直线x=
1
2
对称,则m=
3
2

③关于x的方程ax2-2x+1=0有且仅有一个实数根,则实数a=1;
④已知命题p:?x∈R,都有sinx≤1,则¬p是:?x∈R,使得sinx>1.
其中真命题的序号是_
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程:log2(x+3)-log4x2=a在区间(3,4)内有解,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

研究问题:“已知关于x的方程ax2-bx+c=0的解集为{1,2},解关于x的方程cx2-bx+a=0”,有如下解法:
解:由ax2-bx+c=0⇒a-b(
1
x
)+c(
1
x
)2=0
,令y=
1
x
,则y∈{
1
2
, 1}

所以方程cx2-bx+a=0的解集为{
1
2
, 1}

参考上述解法,已知关于x的方程4x+3•2x+x-91=0的解为x=3,则
关于x的方程log2(-x)-
1
x2
+
3
x
+91=0
的解为
x=-
1
8
x=-
1
8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

研究问题:“已知关于x的方程ax2-bx+c=0的解集为{1,2},解关于x的方程cx2-bx+a=0”,有如下解法:
由ax2-bx+c=0?a-b(
1
x
)+c(
1
x
)2=0
,令y=
1
x
,则y∈{
1
2
, 1}

所以方程cx2-bx+a=0的解集为{
1
2
, 1}

参考上述解法,已知关于x的方程4x+3•2x+x-91=0的解为x=3,则
关于x的方程log2(-x)-
1
x2
+
3
x
+91=0
的解为______.

查看答案和解析>>

同步练习册答案