精英家教网 > 高中数学 > 题目详情
7.设函数f(x)的定义域为R,且为奇函数,当x>0时,f(x)=-x2+2x.若f(x)在区间[-1,a-2]上是单调递增函数,则a的取值范围是1<a≤3.

分析 利用函数奇偶性的性质作出对应的图象,利用函数单调性的性质进行求解即可.

解答 解:因为f(x)为R上的奇函数,所以f(x)的图形关于原点成中心对称,图形如图.
由图象可知函数f(x)在区间[-1,1]上为单调递增函数,
所以$\left\{\begin{array}{l}a-2>-1\\ a-2≤1\end{array}\right.$,解得1<a≤3.
故答案为:1<a≤3

点评 本题主要考查函数单调性的应用,根据函数奇偶性和单调性的性质作出对应的图象,是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{3}}x,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,若f(log2$\frac{\sqrt{2}}{2}$)+f[f(9)]=$\frac{1+2\sqrt{2}}{4}$;若f(f(a))≤1,则实数a的取值范围是${log}_{2}\frac{1}{3}≤a≤(\frac{1}{3})^{\frac{1}{3}}$,或a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.计算i+2i2+3i3+…+2016i2016=1008-1008i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设F为抛物线y2=4x的焦点,A,B,C为该抛物线上不同的三点,$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,O为坐标原点,且△OFA、△OFB、△OFC的面积分别为S1、S2、S3,则S12+S22+S32=(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{\frac{5}{4}sin\frac{π}{4}x,0x≤2}\\{(\frac{1}{2})^{x}+1,x>2}\end{array}\right.$,则关于x的方程f(x2+2x)=a的实数根个数不可能为(  )
A.5个B.4个C.3个D.2个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于抛物线C,设直线l过C的焦点F,且l与C的对称轴的夹角为$\frac{π}{4}$.若l被C所截得的弦长为4,则抛物线C的焦点到顶点的距离为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点F1(-1,0),F2(1,0)是椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦点,过点P(0,3)的直线l与椭圆交于A,B两点,且|AF1|+|AF2|=4.
(1)求椭圆C的标准方程;
(2)若$\overrightarrow{PA}$=$\overrightarrow{AB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.cosα≠cosβ是α≠β的(  )
A.充分不必要条件B.充要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,cos2$\frac{B}{2}$=$\frac{a+c}{2c}$,则△ABC为(  )三角形.
A.B.直角C.等腰直角D.等腰

查看答案和解析>>

同步练习册答案