精英家教网 > 高中数学 > 题目详情
如图,平面分别为的中点.

(I)证明:平面
(II)求与平面所成角的正弦值.
(I)只需证;(II)

试题分析:(I)证明:连接,  在中,分别是的中点,所以, 又,所以,又平面ACD ,DC平面ACD, 所以平面ACD。
(Ⅱ)在中,,所以
而DC平面ABC,,所以平面ABC
平面ABE, 所以平面ABE平面ABC, 所以平面ABE
由(Ⅰ)知四边形DCQP是平行四边形,所以
所以平面ABE, 所以直线AD在平面ABE内的射影是AP,
所以直线AD与平面ABE所成角是
中, ,
所以
点评:本题主要考查了空间中直线与平面所成的角,属立体几何中的常考题型,较难.本题也可以用向量法来做。而对于利用向量法求线面角关键是正确写出点的坐标和求解平面的一个法向量。注意计算要仔细、认真。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图所示,在棱长为1的正方体的面对角线上存在一点使得最短,则的最小值为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在正方体分别是的中点,在棱上,且

(1)求证:; (2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在中,,延长,连接,若,且,则________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD平面PAB

(1)求证:AB平面PCB;
(2)求异面直线AP与BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知长方体中, ,,则二面角的余弦值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体中,MN分别是棱CD1CC1的中点,则异面直线MA1DN所成角的余弦值是            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱柱ABCD—的底面为菱 形 ,AC∩BD=O侧棱BD,F的中点.

(Ⅰ)证明:平面
(Ⅱ)证明:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,将边长为2的正方形ABCD沿对角线BD折叠,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=

(1) 求证:DE⊥AC
(2)求DE与平面BEC所成角的正弦值
(3)直线BE上是否存在一点M,使得CM//平面ADE,若存在,求M的位置,不存在,请说明理由。

查看答案和解析>>

同步练习册答案