精英家教网 > 高中数学 > 题目详情
13.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB=2,E,F分别为PC,CD的中点.
(1)证明:AB⊥平面BEF;
(2)若$PA=\frac{{2\sqrt{5}}}{5}$,求二面角E-BD-C的大小;
( 3)求点C到平面DEB的距离.

分析 (1)证明AB⊥BF.推出平面PAD⊥平面ABCD,证明AB⊥PD,AB⊥EF.然后证明AB⊥平面BEF.
(2)以A为原点,以AB,AD,AP为x轴,y轴,z轴正向建立空间直角坐标系,求出平面CDB的法向量为$\overrightarrow{{n}_{1}}$=(0,0,1),平面EBD的法向量,设二面角E-BD-C的大小为θ,利用空间向量的数量积求解即可.
(3)由(2)知$\overrightarrow{n_2}=({2,1,-\sqrt{5}})$,然后求解点C到平面DEB的距离.

解答 解:(1)证:由已知DF∥AB且∠DAB为直角,故ABFD是矩形,
从而AB⊥BF.
又PA⊥底面ABCD,∴平面PAD⊥平面ABCD,
∵AB⊥AD,故AB⊥平面PAD,∴AB⊥PD,
在△PCD内,E、F分别是PC、CD的中点,EF∥PD,∴AB⊥EF.
由此得AB⊥平面BEF…(4分)
(2)以A为原点,以AB,AD,AP为x轴,y轴,z轴正向建立空间直角坐标系,
则$\overrightarrow{BD}=(-1,2,0),\overrightarrow{BE}=(0,1,\frac{{\sqrt{5}}}{5})$
设平面CDB的法向量为$\overrightarrow{{n}_{1}}$=(0,0,1),平面EBD的法向量为$\overrightarrow{{n}_{2}}$=(x,y,z),
则  $\left\{{\begin{array}{l}{\overrightarrow{n_2}•\overrightarrow{BD}=0}\\{\overrightarrow{n_2}•\overrightarrow{BE}=0}\end{array}}\right.$$\left\{\begin{array}{l}-x+2y=0\\ y+\frac{{\sqrt{5}z}}{5}=0\end{array}\right.$可取$\overrightarrow{n_2}=({2,1,-\sqrt{5}})$
设二面角E-BD-C的大小为θ,则$cosθ=|cos<\overrightarrow{n_1},\overrightarrow{n_2}>|=\frac{{|\overrightarrow{n_1}•\overrightarrow{n_2}|}}{{|{{\overrightarrow n}_1}|•|\overrightarrow{n_2}|}}$=$\frac{{\sqrt{5}}}{{1×\sqrt{10}}}=\frac{{\sqrt{2}}}{2}$,
所以,$θ=\frac{π}{4}$…(8分)
(3)由(2)知$\overrightarrow{n_2}=({2,1,-\sqrt{5}})$,所以,点C到平面DEB的距离为$\frac{{2\sqrt{10}}}{5}$…(12分)

点评 本题考查直线与平面垂直的判定定理以及性质定理的应用,二面角的平面角的求法,点到平面的距离的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知当-1≤a≤1时,x2+(a-4)x+4-2a>0恒成立,则实数x的取值范围是(-∞,1)∪(3,+∞),.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\frac{4}{4x+15}$.
(Ⅰ)求方程f(x)-x=0的实数解;
(Ⅱ)如果数列{an}满足a1=1,an+1=f(an)(n∈N*),是否存在实数c,使得a2n<c<a2n-1对所有的n∈N*都成立?证明你的结论.
(Ⅲ)在(Ⅱ)的条件下,设数列{an}的前n项的和为Sn,证明:$\frac{1}{4}<\frac{S_n}{n}≤1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,x<1}\\{{x}^{2}+ax,x≥1}\end{array}\right.$,若f[f(0)]=4a,则实数a等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=x2-2ax+15-2a的两个零点分别为x1,x2,且在区间(x1,x2)上恰好有两个正整数,则实数a的取值范围($\frac{31}{10}$,$\frac{19}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x),g(x)都是定义在R上的可导函数,并满足以下条件:
①g(x)≠0
②f(x)=2axg(x)(a>0,a≠1)
③f(x)g′(x)<f′(x)g(x)
若$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=5,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$|\begin{array}{l}{3sinx}&{-2}\\{2cosx}&{1}\end{array}|$的最大值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.与-265°终边相同的角为(  )
A.95°B.-95°C.85°D.-85°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.空间中两点A(1,-1,2)、B(-1,1,2$\sqrt{2}$+2)之间的距离是(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案