精英家教网 > 高中数学 > 题目详情
精英家教网如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB中点.
(1)求证:AC1∥平面CDB1
(2)求异面直线AC1与B1C所成角的余弦值;
(3)求二面角B-AC1-C的正切值.
分析:(1)连接C1B交CB1于O点,要证AC1∥平面CDB1,只需证明AC1平行平面CDB1内的直线DO即可.
(2)由(1)知DO∥AC1,∠COD就是异面直线AC1与B1C所成的角.利用余弦定理求异面直线AC1与B1C所成角的余弦值;
(3)在侧面ACC1A1内过C作CE⊥AC1于E,连接BE,说明∠BEC就是二面角B-AC1-C的平面角,然后求二面角B-AC1-C的正切值.
解答:解:(1)证明:连接C1B交CB1于O点,
由已知四边形BCC1B1为矩形,
∴O为C1B的中点,又D为AB的中点,
连接DO,则DO∥AC1
而AC1?面B1CD,DO?面B1CD,
∴AC1∥面CDB1.(5分)
(2)解:由(1)知DO∥AC1
∴∠COD就是异面直线AC1与B1C所成的角.
依题设知:CD=
1
2
AB=
5
2
,CO=
1
2
CB1=2
2
,DO=
1
2
AC1=
5
2

Cos∠COD=
CO2+DO2-CD2
2•CO•DO
=
8+
25
4
-
25
4
2•2
2
5
2
=
2
2
5

即异面直线AC1与B1C所成角的余弦值为
2
2
5
.(9分)
(3)解:依题设BC⊥侧面ACC1A1,则在侧面ACC1A1内过C作CE⊥AC1于E,连接BE,由AC1⊥面BCE知AC1⊥BE,∴∠BEC就是二面角B-AC1-C的平面角.在Rt△BCE中,BC=4,CE=
3×4
5
,∴tan∠BEC=
BC
CE
=
5
3
,即二面角B-AC1-C的正切值为
5
3
点评:本题考查直线与平面的垂直的判定,二面角的求法,异面直线所成的角,考查空间想象能力,逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案