设P1(x1,y1), P1(x2,y2),…, Pn(xn,yn)(n≥3,n∈N) 是二次曲线C上的点, 且a1=
2, a2=
2, …, an=
2构成了一个公差为d(d≠0) 的等差数列, 其中O是坐标原点. 记Sn=a1+a2+…+an.
(1)若C的方程为
-y2=1,n=3. 点P1(3,0) 及S3=162, 求点P3的坐标;(只需写出一个)
(2)若C的方程为y2=2px(p≠0). 点P1(0,0), 对于给定的自然数n, 证明:(x1+p)2, (x2+p)2, …,(xn+p)2成等差数列;
(3)若C的方程为
(a>b>0). 点P1(a,0), 对于给定的自然数n, 当公差d变化时, 求Sn的最小值.
| 符号意义 | 本试卷所用符号 | 等同于《实验教材》符号 |
| 向量坐标 |
|
|
| 正切 | tg | tan |
解:(1) a1=
2=9,由S3=
(a1+a3)=162,得a3=
3=99.
| 由 |
| ,得 | x |
| x | y |
∴点P3的坐标可以为(3
,3).
(2)对每个自然数k,1≤k≤n,由题意
2=(k-1)d,及
| y | ,得x |
| x |
即(xk+p)2=p2+(k-1)d,
∴(x1+p)2, (x2+p)2, …,(xn+p)2是首项为p2,公差为d的等差数列.
(3) 解法一:原点O到二次曲线C:
(a>b>0)上各点的最小距离为b,最大距离为a.
∵a1=
2=a2, ∴d<0,且an=
2=a2+(n-1)d≥b2,
∴
≤d<0. ∵n≥3,
>0
∴Sn=na2+
d在[
,0)上递增,
故Sn的最小值为na2+
?
=
.
解法二:对每个自然数k(2≤k≤n),
| 由 | x | ,解得y |
|
|
∵0< y
≤b2,得
≤d<0 ∴
≤d<0 以下与解法一相同.
科目:高中数学 来源: 题型:
| 1 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| 9 |
| x2 |
| a2 |
| y2 |
| b2 |
| 符号意义 | 本试卷所用符号 | 等同于《实验教材》符号 | ||||
| 向量坐标 |
|
| ||||
| 正切 | tg | tan |
查看答案和解析>>
科目:高中数学 来源: 题型:
| a•2x | ||
2x+
|
| 2 |
| OP |
| 1 |
| 2 |
| OP1 |
| OP2 |
| 1 |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x+y |
| 2 |
| x-y |
| 2 |
| 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com