精英家教网 > 高中数学 > 题目详情

已知数列{an}满足a1=1,且an=数学公式an-1+(数学公式n(n≥2),且n∈N*),则数列{an}中项的最大值为________.

1
分析:把给出的数列递推式an=an-1+(n变形后得到新数列{3nan},该数列是以3为首项,以1为公比的等比数列,求出其通项公式后,进一步求出数列{an}的通项公式,结合数列的函数特性分析出其单调性,从而求出数列{an}中项的最大值.
解答:由an=an-1+(n(n≥2),
得:(n≥2),
(n≥2),
所以,{3nan}构成以3a1=3为首项,以1为公差的等差数列.
则3nan=3+(n-1)×1=n+2,
所以,
,则=
当x∈(0,+∞)时,f(x)<0,所以f(x)在(0,+∞)上为减函数,
所以,在n=1时有最大值,最大值
则数列{an}中项的最大值为1.
故答案为1.
点评:本题考查了由数列的递推式求数列的通项公式,考查了构造新数列的方法,考查了数列的函数特性,训练了由导函数判断函数的单调性,此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案