精英家教网 > 高中数学 > 题目详情

0≤≤2π时,曲线由下面方程给出,求函数y=f(x)的最大值与最小值.

答案:
解析:

  

  

  当时,

  当时,,函数是增函数.

  当0<x<1时,

  当时,,当时,

  处取得极大值.

  当时,是增函数.

  当时,,函数是减函数,故也是最大值,又

  的最小值为

  最大值为


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网我们把由半椭圆
x2
a2
+
y2
b2
=1
(x≥0)与半椭圆
y2
b2
+
x2
c2
=1
(x≤0)合成的曲线称作“果圆”,其中a2=b2+c2,a>0,b>c>0.如图,设点F0,F1,F2是相应椭圆的焦点,A1,A2和B1,B2是“果圆”与x,y轴的交点,M是线段A1A2的中点.
(1)若△F0F1F2是边长为1的等边三角形,求该“果圆”的方程;
(2)设P是“果圆”的半椭圆
y2
b2
+
x2
c2
=1
(x≤0)上任意一点.求证:当|PM|取得最小值时,P在点B1,B2或A1处;
(3)若P是“果圆”上任意一点,求|PM|取得最小值时点P的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤π)的图象的最高点D的坐标为(2,
2
)
,由最高点运动到相邻的最低点F时,曲线与x轴相交于点E(6,0).
(1)求A、ω、φ的值;
(2)求函数y=g(x),使其图象与y=f(x)图象关于直线x=8对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浦东新区三模)已知椭圆C的长轴长是焦距的两倍,其左、右焦点依次为F1、F2,抛物线M:y2=4mx(m>0)的准线与x轴交于F1,椭圆C与抛物线M的一个交点为P.
(1)当m=1时,求椭圆C的方程;
(2)在(1)的条件下,直线l过焦点F2,与抛物线M交于A、B两点,若弦长|AB|等于△PF1F2的周长,求直线l的方程;
(3)由抛物线弧y2=4mx(0≤x≤
2m
3
)
和椭圆弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲线叫“抛椭圆”,是否存在以原点O为直角顶点,另两个顶点A1、A2落在“抛椭圆”上的等腰直角三角形OA1A2,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•卢湾区二模)(文)(1)已知动点P(x,y)到点F(0,1)与到直线y=-1的距离相等,求点P的轨迹L的方程;
(2)若正方形ABCD的三个顶点A(x1,y1),B(x2,y2),C(x3,y3)(x1<0≤x2<x3)在(1)中的曲线L上,设BC的斜率为k,l=|BC|,求l关于k的函数解析式l=f(k);
(3)由(2),求当k=2时正方形ABCD的顶点D的坐标.

查看答案和解析>>

同步练习册答案