【题目】偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=
【答案】3
【解析】解:法1:因为偶函数y=f(x)的图象关于直线x=2对称,
所以f(2+x)=f(2﹣x)=f(x﹣2),
即f(x+4)=f(x),
则f(﹣1)=f(﹣1+4)=f(3)=3,
法2:因为函数y=f(x)的图象关于直线x=2对称,
所以f(1)=f(3)=3,
因为f(x)是偶函数,
所以f(﹣1)=f(1)=3,
所以答案是:3.
【考点精析】认真审题,首先需要了解函数奇偶性的性质(在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇).
科目:高中数学 来源: 题型:
【题目】甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )
A.150种
B.180种
C.300种
D.345种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】ABCD是矩形,AB=4,AD=3,沿AC将△ADC折起到△AD′C,使平面AD′C⊥平面△ABC,F是AD′的中点,E是AC上的一点,给出下列结论:
①存在点E,使得EF∥平面BCD′;
②存在点E,使得EF⊥平面ABD′;
③存在点E,使得D′E⊥平面ABC;
④存在点E,使得AC⊥平面BD′E.
其中正确结论的序号是 .(写出所有正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}是以3为首项,1为公差的等差数列,{bn}是以1为首项,2为公比的等比数列,则ba1+ba2+ba3+ba4=( )
A.15
B.60
C.63
D.72
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题“若A=B,则cosA=cosB”的否命题是( )
A.若A=B,则cosA≠cosB
B.若cosA=cosB,则A=B
C.若cosA≠cosB,则A≠B
D.若A≠B,则cosA≠cosB
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】f(x)=|x﹣2017|+|x﹣2016|+…+|x﹣1|+|x+1|+…+|x+2016|+|x+2017|,在不等式e2017x≥ax+1(x∈R)恒成立的条件下等式f(2018﹣a)=f(2017﹣b)恒成立,求b的取值集合( )
A.{b|2016≤b≤2018}
B.{2016,2018}
C.{2018}
D.{2017}
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com