精英家教网 > 高中数学 > 题目详情
设函数f(x)=(1+x)2-2ln(1+x).
(Ⅰ)求f (x)的单调区间;
(Ⅱ)若当x∈[
1e
-1,e-1]
时,不等式f (x)<m恒成立,求实数m的取值范围;
(Ⅲ)若关于x的方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,求实数a的取值范围.
分析:(Ⅰ)已知f(x)=(1+x)2-2ln(1+x)求出函数的导数f′(x),然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数的单调性,从而求解;
(Ⅱ)由题意当x∈[
1
e
-1,e-1]
时,不等式f (x)<m恒成立,只要求出f(x)的最大值小于m就可以了,从而求出实数m的取值范围;
(Ⅲ)已知方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,整理移项得方程g(x)=x-a+1-2ln(1+x)=0在区间[0,2]上恰好有两个相异的实根,利用函数的增减性得根,于是有
g(0)≥0
g(1)<0
g(2)≥0.
,从而求出实数a的取值范围.
解答:解:(Ⅰ)函数的定义域为(-1,+∞).(1分)
f/(x)=2[(x+1)-
1
x+1
]=
2x(x+2)
x+1

由f′(x)>0,得x>0;由f′(x)<0,得-1<x<0.(3分)
∴f(x)的递增区间是(0,+∞),递减区间是(-1,0).(4分)
(Ⅱ)∵由f/(x)=
2x(x+2)
x+1
=0
,得x=0,x=-2(舍去)
由(Ⅰ)知f(x)在[
1
e
-1,0]
上递减,在[0,e-1]上递增.
高三数学(理科)答案第3页(共6页)
f(
1
e
-1)=
1
e2
+2
,f(e-1)=e2-2,且e2-2>
1
e2
+2

∴当x∈[
1
e
-1,e-1]
时,f(x)的最大值为e2-2.
故当m>e2-2时,不等式f(x)<m恒成立.(9分)
(Ⅲ)方程f(x)=x2+x+a,x-a+1-2ln(1+x)=0.
记g(x)=x-a+1-2ln(1+x),
g/(x)=1-
2
1+x
=
x-1
x+1

由g′(x)>0,得x>1或x<-1(舍去).由g′(x)<0,得-1<x<1.
∴g(x)在[0,1]上递减,在[1,2]上递增.
为使方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,
只须g(x)=0在[0,1]和(1,2]上各有一个实数根,于是有
g(0)≥0
g(1)<0
g(2)≥0.

∵2-2ln2<3-2ln3,
∴实数a的取值范围是2-2ln2<a≤3-2ln3.(14分)
点评:此题主要考查对数函数的导数,函数单调性的判定,函数最值,函数、方程与不等式等基础知识,一般出题者喜欢考查学生的运算求解能力、推理论证能力及分析与解决问题的能力,要出学生会用数形结合的思想、分类与整合思想,化归与转化思想、有限与无限的思想来解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax3-3x+1(x∈R),若对于任意的x∈[-1,1]都有f(x)≥0成立,则实数a的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)设函数f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>0}
(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β-α);
(Ⅱ)给定常数k∈(0,1),当1-k≤a≤1+k时,求I长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•浦东新区二模)记函数f(x)=f1(x),f(f(x))=f2(x),它们定义域的交集为D,若对任意的x∈D,f2(x)=x,则称f(x)是集合M的元素.
(1)判断函数f(x)=-x+1,g(x)=2x-1是否是M的元素;
(2)设函数f(x)=log2(1-2x),求f(x)的反函数f-1(x),并判断f(x)是否是M的元素;
(3)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=f1(x),f(f(x))=f2(x),它们定义域的交集为D,若对任意的x∈D,f2(x)=x,则称f(x)是集合M的元素,
例如f(x)=-x+1,对任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)设函数f(x)=log2(1-2x),判断f(x)是否是M的元素,并求f(x)的反函数f-1(x);
(2)f(x)=
axx+b
∈M
(a<0),求使f(x)<1成立的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设函数f(x)=xlog2x+(1-x)log2(1-x)(0<x<1),求f(x)的最小值.
(2)设正数P1,P2,P3,…P2n满足P1+P2+…P2n=1,求证:P1log2P1+P2log2P2+P3log2P3+…+P2nlog2P2n≥-n.

查看答案和解析>>

同步练习册答案