精英家教网 > 高中数学 > 题目详情
已知椭圆经过点,且两焦点与短轴的一个端点构成等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)动直线交椭圆两点,试问:在坐标平面上是否存在一个定点,使得以为直径的圆恒过点.若存在,求出点的坐标;若不存在,请说明理由.
(1)(2)点就是所求的点

试题分析:(Ⅰ)椭圆的两焦点与短轴的一个端点连线构成等腰直角三角形,所以,故椭圆的方程为
又因为椭圆经过点,代入可得,2分
所以,故所求椭圆方程为.4分
(Ⅱ)当直线的斜率为0时,直线,直线交椭圆两点,以为直径的圆的方程为; 
当直线的斜率不存在时,直线,直线交椭圆两点,以为直径的圆的方程为
解得
即两圆相切于点,因此,所求的点如果存在,只能是.8分
事实上,点就是所求的点.
证明如下:
的斜率不存在时,以为直径的圆过点.9分
的斜率存在时,可设直线
消去
记点,则    10分
又因为
所以

所以,即以为直径的圆恒过点,12分
所以在坐标平面上存在一个定点满足条件.13分
点评:主要是考查了解析几何中运用代数的方法来建立方程组结合韦达定理来研究位置关系的运用,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的短轴长等于焦距,椭圆C上的点到右焦点的最短距离为.
(1)求椭圆C的方程;
(2)过点且斜率为(>0)的直线C交于两点,是点关于轴的对称点,证明:三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆+=1(a>b>0)上一点A关于原点的对称点为B, F为其右焦点, 若AF⊥BF, 设∠ABF=, 且∈[,], 则该椭圆离心率的取值范围为            (       )
A.[,1 ) B.[,]C.[, 1) D.[,

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线C的直角坐标方程为,以原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为 __________;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若焦点在轴上的椭圆的离心率为,则的值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

动圆过定点,且与直线相切,其中.设圆心的轨迹的程为
(1)求
(2)曲线上的一定点(0) ,方向向量的直线(不过P点)与曲线交与A、B两点,设直线PA、PB斜率分别为,计算
(3)曲线上的两个定点,分别过点作倾斜角互补的两条直线分别与曲线交于两点,求证直线的斜率为定值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的离心率为.双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆的方程为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是椭圆的左、右焦点,O为坐标原点,点P在椭圆上,线段与y轴的交点M满足
(Ⅰ) 求椭圆的标准方程;
(Ⅱ) 圆O是以为直径的圆,直线与圆相切,并与椭圆交于不同的两点,当,且满足时,求直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,已知△ABC顶点,顶点B在椭圆上,则      .

查看答案和解析>>

同步练习册答案