精英家教网 > 高中数学 > 题目详情
已知椭圆C的短轴长等于焦距,椭圆C上的点到右焦点的最短距离为.
(1)求椭圆C的方程;
(2)过点且斜率为(>0)的直线C交于两点,是点关于轴的对称点,证明:三点共线.
(1)(2)设出直线的方程,联立方程组即可利用利用两个向量共线证明三点共线

试题分析:(1)由题意:,得
所求椭圆的方程为:                                                        …4分
(2)设直线
 消得:
所以                                                               …8分 



. 又 有公共点   ∴三点共线.                         …14分
点评:证明三点共线,一般转化为两个两个向量共线,而这又离不开直线方程和椭圆方程联立方程组,运算量比较大,要注意“舍而不求”思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点,且两焦点与短轴的一个端点构成等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)动直线交椭圆两点,试问:在坐标平面上是否存在一个定点,使得以为直径的圆恒过点.若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,过抛物线>0)的顶点作两条互相垂直的弦OA、OB。

⑴设OA的斜率为k,试用k表示点A、B的坐标;
⑵求弦AB中点M的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

曲线都是以原点O为对称中心、坐标轴为对称轴、离心率相等的椭圆.点M的坐标是(0,1),线段MN是曲线的短轴,并且是曲线的长轴 . 直线与曲线交于A,D两点(A在D的左侧),与曲线交于B,C两点(B在C的左侧).
(1)当=时,求椭圆的方程;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若直线过双曲线的一个焦点,且与双曲线的一条渐近线平行.
(Ⅰ)求双曲线的方程;
(Ⅱ)若过点轴不平行的直线与双曲线相交于不同的两点的垂直平分线为,求直线轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的离心率为,右准线方程为
(Ⅰ)求双曲线C的方程;
(Ⅱ)已知直线与双曲线C交于不同的两点AB,且线段AB的中点在圆上,求实数m的值。  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线左焦点的直线与以右焦点为圆心、为半径的圆相切于A点,且,则双曲线的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,是平面的斜线段,为斜足。若点在平面内运动,使得的面积为定值,则动点的轨迹是(   )
A.圆B.椭圆
C.一条直线D.两条平行直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的一个焦点为,点位于该双曲线上,线段的中点坐标为,则该双曲线的标准方程为
A.B.C.D.

查看答案和解析>>

同步练习册答案