精英家教网 > 高中数学 > 题目详情
设函数f(x)=2|x-1|+x-1,g(x)=16x2-8x+1,记f(x)≤1的解集为M,g(x)≤4的解集为N.
(Ⅰ)求M;
(Ⅱ)当x∈M∩N时,求函数h(x)=x2f(x)+x[f(x)]2的最大值.
考点:函数的最值及其几何意义,不等式的证明
专题:计算题,分类讨论,函数的性质及应用,不等式的解法及应用
分析:(Ⅰ)由所给的不等式可得
x≥1
3x-3≤1
 ①,或
x<1
1-x≤1
 ②.分别求得①、②的解集,再取并集,即得所求;
(Ⅱ)由g(x)≤4,求得N,可得M∩N=[0,
3
4
].当x∈M∩N时,f(x)=1-x,h(x)=
1
4
-(x-
1
2
2,显然它小于或等于
1
4
,最大值即可得到.
解答: 解:(Ⅰ)由f(x)=2|x-1|+x-1≤1 可得
x≥1
3x-3≤1
 ①,或
x<1
1-x≤1
 ②.
解①求得1≤x≤
4
3
,解②求得 0≤x<1.
综上,原不等式的解集M为[0,
4
3
].
(Ⅱ)由g(x)=16x2-8x+1≤4,求得-
1
4
≤x≤
3
4
,∴N=[-
1
4
3
4
],
∴M∩N=[0,
3
4
].
∵当x∈M∩N时,
f(x)=1-x,h(x)=x2f(x)+x[f(x)]2 =xf(x)[x+f(x)]
=
1
4
-(x-
1
2
2
1
4
,当且仅当x=
1
2
时,取得最大值
1
4

则函数的最大值为
1
4
点评:本题主要考查绝对值不等式的解法,体现了分类讨论、等价转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3+xsina,a∈(0,
π
2
),且f(kcosa)+f(1-k)≥0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈R,b≠0,曲线y=x3-ax2-bx和直线 y=ax+b有交点Q(m,n)(m,n∈Z),则a,b满足的等量关系式为
 
.(不能含其它参量)

查看答案和解析>>

科目:高中数学 来源: 题型:

计算
.
24
13
.
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设V是已知平面M上所有向量的集合,对于映射f:V→V,a∈V,记a的象为f(a).若映射f:V→V满足:对所有a,b∈V及任意实数λ,μ都有f(λa+μb)=λf(a)+μf(b),则f称为平面M上的线性变换.现有下列命题:
①设f是平面M上的线性变换,a∈V,则对任意实数k均有f(ka)=kf(a);
②对a∈V,设f(a)=2a,则f是平面M上的线性变换;
③设f是平面M上的线性变换,a,b∈V,若a,b共线,则f(a),f(b)也共线;
④若e是平面M上的单位向量,对a∈V,设f(a)=a-e,则f是平面M上的线性变换.
其中真命题是
 
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

求曲线C:y=x2-2x+2关于点P(-2,1)的对称曲线C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P1(a1,b2),P2(a2,b2)…Pn(an,bn)(n为正整数)都在函数y=(
1
2
)x
的图象上,且数列{an}是a1=1,公差为1的等差数列.
(1)求数列{bn}的通项公式;
(2)对数列{an},对每个正整数k,在ak与ak+1之间插入2k-1个5(如在a1与a2之间插入20个5,a2与a3之间插入21个5,a3与a4之间插入22个5,…,依此类推),得到一个新数列{dn},设Sn是数列{dn}的前n项和,试求S1000

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆
x2
25
+
y2
9
=1
上一点P到一个焦点的距离为5,则P到另一个焦点的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|lgx|,0<x≤3
f(6-x),3<x≤6
,设方程f(x)=2-x+b(b∈R)的四个实根从小到大依次为x1,x2,x3,x4,对于满足条件的任意一组实根,下列判断中一定正确的为(  )
A、x1+x2=2
B、1<x1x2<9
C、0<(6-x3)(6-x4)<1
D、9<x3x4<25

查看答案和解析>>

同步练习册答案