精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率,且椭圆过点.

(1)求椭圆的标准方程;

(2)设直线交于两点,点上,是坐标原点,若,判断四边形的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.

【答案】(1) (2)见解析

【解析】

(1)根据离心率和椭圆经过的点的坐标,建立方程组求解椭圆的方程;(2)写出四边形的面积表达式,结合表达式的特征进行判断.

解:(1)因为椭圆的离心率,所以,即.

因为点在椭圆上,所以.

解得.

所以椭圆的标准方程为.

(2)当直线的斜率不存在时,直线的方程为,此时四边形的面积为.

当直线的斜率存在时,设直线的方程是

联立方程组,消去,得

.

到直线的距离是.

,得.

因为点在曲线上,所以有,整理得.

由题意,四边形为平行四边形,所以四边形的面积为

.

,得,故四边形的面积是定值,其定值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】黄河被称为我国的母亲河,它的得名据说来自于河水的颜色,黄河因携带大量泥沙所以河水呈现黄色, 黄河的水源来自青海高原,上游的1000公里的河水是非常清澈的.只是中游流经黄土高原,又有太多携带有大量泥沙的河流汇入才造成黄河的河水逐渐变得浑浊.在刘家峡水库附近,清澈的黄河和携带大量泥沙的洮河汇合,在两条河流的交汇处,水的颜色一清一浊,互不交融,泾渭分明,形成了一条奇特的水中分界线,设黄河和洮河在汛期的水流量均为2000,黄河水的含沙量为,洮河水的含沙量为,假设从交汇处开始沿岸设有若干个观测点,两股河水在流经相邻的观测点的过程中,其混合效果相当于两股河水在1秒内交换的水量,即从洮河流入黄河的水混合后,又从黄河流入的水到洮河再混合.

1)求经过第二个观测点时,两股河水的含沙量;

2)从第几个观测点开始,两股河水的含沙量之差小于?(不考虑泥沙沉淀)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB是圆O的直径,点C是圆O上异于AB的动点,过动点C的直线VC垂直于圆O所在平面,DE分别是VAVC的中点.

1)判断直线DE与平面VBC的位置关系,并说明理由;

2)当△VAB为边长为的正三角形时,求四面体VDEB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB是圆O的直径,点C是圆O上异于AB的动点,过动点C的直线VC垂直于圆O所在平面,DE分别是VAVC的中点.

1)判断直线DE与平面VBC的位置关系,并说明理由;

2)当△VAB为边长为的正三角形时,求四面体VDEB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)解不等式:

(Ⅱ)已知,若对任意的,不等式恒成立,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:

单价(元)

18

19

20

21

22

销量(册)

61

56

50

48

45

(l)根据表中数据,请建立关于的回归直线方程:

(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的两个顶点的坐标分别为,圆的内切圆,在边上的切点分别为,动点的轨迹为曲线.

(1)求曲线的方程;

(2)设直线与曲线交于两点,点在曲线上,是坐标原点,若,判断四边形的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,则

②若,则

③若,则

④若,则

其中正确命题的序号是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数,)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线有且只有一个公共点.

(1)求实数的值;

(2)已知点的直角坐标为,若曲线为参数)相交于两个不同点,求的值.

查看答案和解析>>

同步练习册答案