精英家教网 > 高中数学 > 题目详情

【题目】下列四个结论中:
(1)如果两个函数都是增函数,那么这两个函数的积运算所得函数为增函数;
(2)奇函数f(x)在[0,+∞)上是增函数,则f(x)在R上为增函数;
(3)既是奇函数又是偶函数的函数只有一个;
(4)若函数f(x)的最小值是a,最大值是b,则f(x)值域为[a,b].
其中正确结论的序号为

【答案】(2)
【解析】解:(1),当x∈(0,+∞)时,y=x与y=﹣ 均为增函数,但这两个函数的积运算所得函数为y=x(﹣ )=﹣1不是增函数(为常函数),故(1)错误;(2)奇函数f(x)在[0,+∞)上是增函数,则f(x)在(﹣∞,0)上也是增函数,故在R上为增函数,(2)正确;(3)既是奇函数又是偶函数的函数只有一个,错误.如x∈(﹣1,1)时,f(x)=0既是奇函数又是偶函数的函数;f(x)= + 既是奇函数又是偶函数的函数,故(3)错误;(4)若a<b,函数f(x)= ,即函数f(x)的最小值是a,最大值是b,则f(x)值域为{a,b},而不是[a,b],故(4)错误.
所以答案是:(2).
【考点精析】本题主要考查了命题的真假判断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是等差数列的前项和,已知 .

1)求

2若数列求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCDAB⊥ADAC⊥CD∠ABC=60°PA=AB=BC

EPC的中点.求证:

CD⊥AE

PD⊥平面ABE

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A={x|x2﹣2x﹣8<0},B={x|x2+2x﹣3>0},C={x|x2﹣3ax+2a2<0},
(1)求A∩B.
(2)试求实数a的取值范围,使C(A∩B).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入,已知研发投入 (十万元)与利润 (百万元)之间有如下对应数据:

2

3

4

5

6

2

4

5

6

7

若由资料知呈线性相关关系。试求:

1)线性回归方程

2)估计时,利润是多少?

附:利用最小二乘法计算a,b的值时,可根据以下公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=ax﹣1(a>0,且a≠1).
(1)求f(2)+f(﹣2)的值;
(2)求f(x)的解析式;
(3)解关于x的不等式f(x)<4,结果用集合或区间表示.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月产量如表(单位:辆):

轿车A

轿车B

轿车C

舒适型

100

150

z

标准型

300

450

600

按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆。

(1)求z的值;

(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本。将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中,表示同一函数的是(
A.f(x)=x﹣1,g(x)= ﹣1
B.f(x)=|x|,g(x)=( 2
C.f(x)=x,g(x)=
D.f(x)=2x,g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)已知幂函数f(x)=(﹣2m2+m+2)x2m+1为偶函数,求函数f(x)的解析式;
(2)已知x+x1=3(x>1),求x2﹣x2的值.

查看答案和解析>>

同步练习册答案