精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)= sinxcosx+cos2x,锐角△ABC的三个角A,B,C所对的边分别为a,b,c. (Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若f(C)=1,求m= 的取值范围.

【答案】解:(Ⅰ) .∴函数f(x)的最小正周期
是单调递增,
解得:
∴函数f(x)的单调递增区间 ,最小正周期为π.
(Ⅱ)由(Ⅰ)可得f(C)=sin(2C+ )=1


k∈Z,
∵△ABC是锐角三角形,

由余弦定理c2=a2+b2﹣2abcosC,可得c2=a2+b2﹣ab

∵△ABC为锐角三角形

由正弦定理得:

【解析】(Ⅰ)将f(x)化简,结合三角函数的性质求解即可.(Ⅱ)利用f(C)=1,求解角C,由余弦定理建立等式关系,利用三角函数的有界限求解范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是( )

A. 有两个面平行,其余各面都是四边形的几何体叫棱柱

B. 有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱

C. 用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台

D. 有两个面平行,其余各面都是平行四边形的几何体叫棱柱

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 ,命题 .

1)若,求实数的值;

2)若的充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若以直角坐标系xOy的O为极点,Ox为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程是ρ=
(1)将曲线C的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;
(2)若直线l的参数方程为 (t为参数)当直线l与曲线C相交于A,B两点,求| |

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2分别为椭圆C1 (a>b>0)的上下焦点,其F1是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
(1)试求椭圆C1的方程;
(2)与圆x2+(y+1)2=1相切的直线l:y=k(x+t)(t≠0)交椭圆于A,B两点,若椭圆上一点P满足 ,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sinωx(>0)的图象向右平移 个单位得到函数y=g(x)的图象,并且函数g(x)在区间[ ]上单调递增,在区间[ ]上单调递减,则实数ω的值为(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求在区间上的取值范围.

)当时,,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为 (α为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+ )= .l与C交于A、B两点. (Ⅰ)求曲线C的普通方程及直线l的直角坐标方程;
(Ⅱ)设点P(0,﹣2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.点E是棱PC的中点,平面ABE与棱PD交于点F. (Ⅰ)求证:AB∥EF;
(Ⅱ)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF与平面AFE所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案