精英家教网 > 高中数学 > 题目详情
设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线与椭圆相交,其中的一个交点为P,若△F1PF2为等腰直角三角形,则椭圆的离心率是(  )
A、
2
-1
B、
2
+1
2
C、2
2
D、
2
2
分析:设椭圆的方程和点P的坐标,把点P的坐标代入椭圆的方程,求出点P的纵坐标的绝对值,Rt△PF1F2 中,利用边角关系,
建立a、c 之间的关系,从而求出椭圆的离心率.
解答:解:设椭圆的方程为
x2
a2
+
y2
b2
=1
 (a>b>0),设点P(c,h),则
c2
a2
+
h2
b2
=1,
h2=b2-
b2c2
a2
=
b4
a2
,∴|h|=
b2
a
,由题意得∠F1PF2=90°,∠PF1F2=45°,
Rt△PF1F2 中,tan45°=1=
PF2
F1F2
=
PF2
2c
=
|h|
2c
=
b2
2ac
=
a2-c2
2ac

∴a2-c2=2ac,(
c
a
)
2
+2•
c
a
-1=0,∴
c
a
=
2
-1,
故选 A.
点评:本题考查椭圆的简单性质,直角三角形中的边角关系的应用.考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是(  )
A、
2
2
B、
2
-1
2
C、2-
2
D、
2
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆的两个焦点分别为F1、F2,椭圆短轴的一端点为B,若△F1BF2为等腰直角三角形,则椭圆的离心率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

10.设椭圆的两个焦点分别为,过F2作椭圆长轴的垂线交椭圆于点,若为等腰直角三角形,则椭圆的离心率为(  )

A             B              

C          D

查看答案和解析>>

同步练习册答案