精英家教网 > 高中数学 > 题目详情
(文)不等式xy≤ax2+2y2 对任意x∈[1,2]及y∈[2,3]恒成立,则实数a的范围是( )
A.-1≤a≤-
B.a≥-3
C.a≥-1
D.-3≤a≤-1
【答案】分析:将a分离出来得 ,然后根据x∈[1,2],y∈[2,3]求出的范围,令 ,则a≥t-2t2在[1,3]上恒成立,利用二次函数的性质求出t-2t2的最大值,即可求出a的范围.
解答:解:由题意可知:不等式xy≤ax2+2y2对于x∈[1,2],y∈[2,3]恒成立,
即:,对于x∈[1,2],y∈[2,3]恒成立,
,则1≤t≤3,
∴a≥t-2t2在[1,3]上恒成立,

∴ymax=-1,
∴a≥-1
 故选C.
点评:本题主要考查了函数恒成立问题,以及分离法的应用,同时考查了二次函数在闭区间上的值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文)不等式xy≤ax2+2y2 对任意x∈[1,2]及y∈[2,3]恒成立,则实数a的范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(文)不等式xy≤ax2+2y2 对任意x∈[1,2]及y∈[2,3]恒成立,则实数a的范围是(  )
A.-1≤a≤-
35
9
B.a≥-3C.a≥-1D.-3≤a≤-1

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省安溪一中、养正中学、惠安一中三校联考高一(下)期末数学试卷(解析版) 题型:选择题

(文)不等式xy≤ax2+2y2 对任意x∈[1,2]及y∈[2,3]恒成立,则实数a的范围是( )
A.-1≤a≤-
B.a≥-3
C.a≥-1
D.-3≤a≤-1

查看答案和解析>>

科目:高中数学 来源:《不等式》2013年高三数学一轮复习单元训练(北京师范大学大学附中)(解析版) 题型:选择题

(文)不等式xy≤ax2+2y2 对任意x∈[1,2]及y∈[2,3]恒成立,则实数a的范围是( )
A.-1≤a≤-
B.a≥-3
C.a≥-1
D.-3≤a≤-1

查看答案和解析>>

同步练习册答案