精英家教网 > 高中数学 > 题目详情
1.如图,在矩形ABCD中,M是BC的中点,N是CD的中点,若$\overrightarrow{AC}=λ\overrightarrow{AM}+μ\overrightarrow{BN}$,则λμ=$\frac{12}{25}$.

分析 以A为坐标原点建立坐标系,设矩形的长宽分别为2a,2b,得到A,B,C,M,N的坐标,利用向量相等得到关于λ,μ的方程组解之.

解答 解:以A为坐标原点建立坐标系,设矩形的长宽分别为2a,2b,
得到A(0,0),B(2a,0),C(2a,2b),
M(2a,b),N(a,2b),
所以$\overrightarrow{AC}$=(2a,2b),$\overrightarrow{AM}$=(2a,b),$\overrightarrow{BN}$=(-a,2b),
由$\overrightarrow{AC}=λ\overrightarrow{AM}+μ\overrightarrow{BN}$,则$\left\{\begin{array}{l}{2a=2aλ-aμ}\\{2b=bλ+2bμ}\end{array}\right.$,解得$\left\{\begin{array}{l}{λ=\frac{6}{5}}\\{μ=\frac{2}{5}}\end{array}\right.$,
所以λμ=$\frac{12}{25}$;
故答案为:$\frac{12}{25}$

点评 本题考查了平面向量基本定理的运用,利用坐标法使得计算简便,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若a,b∈R+,4a+b=1,则$\frac{1}{a}+\frac{1}{b}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知随机事件A与B,经计算得到K2的范围是3.841<K2<6.635,则(如表是K2的临界值表,供参考)(  )
P(K2≥x00.150.100.050.0250.0100.0050.001
x02.0722.7063.8415.0246.6357.87910.828
A.有95% 把握说事件A与B有关B.有95% 把握说事件A与B无关
C.有99% 把握说事件A与B有关D.有99% 把握说事件A与B无关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设复数z满足|z-3-4i|=1,其中i为虚数单位,则|z|的最大值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|x2+2x-3≤0},B={x|0≤log4(x+2)≤1},则A∩B=(  )
A.[-3,2]B.[-1,1]C.[-1,2]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$α∈(\frac{π}{2},π)$,且$sinα=\frac{4}{5}$.
(1)求$cos(α-\frac{π}{4})$的值;
(2)求${sin^2}\frac{α}{2}+\frac{sin4αcos2α}{1+cos4α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\sqrt{3}sin(x+\frac{π}{4})$,x∈R
(1)求f(x)的单调增区间;
(2)已知A、B、C是△ABC的内角,且满足$f(B)=\sqrt{3}$,求$\sqrt{2}$cosA+cosC 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}为等差数列,且a3=5,a5=9,数列{bn}的前n项和Sn=$\frac{2}{3}$bn+$\frac{1}{3}$.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=an|bn|,求数列{cn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R
(1)讨论函数f(x)极值点的个数,并说明理由;
(2)若任意x∈(0,+∞),f(x)>0成立,求a的取值范围.

查看答案和解析>>

同步练习册答案