(本题满分15分)已知函数![]()
.
(I)讨论
在
上的奇偶性;
(II)当
时,求函数
在闭区间[-1,
]上的最大值.
(1)f(x)是非奇非偶函数;(2)
(1)f(x)=|x|(x-a)
当a=0时,f(x)=x·|x|为奇函数
当a≠0时,f(x)=(x-a)|x|,∵f(-a)≠f(a)且f(-a)≠-f(a)
∴f(x)是非奇非偶函数
(2)当a=0时,f(x)=x|x|是奇函数,在R上单调递增
∴当-1≤x≤
时,f(-1)≤f(x)≤f(
)
f(x)∈[-1,
],此时f(x)max=![]()
当a<0时,![]()
即![]()
①若-1≤
即a≥-2时,f(x)的最大值为f(
)或f(
)
∵f(
)-f(
)=![]()
又∵-2≤a<0,则f(
)<f(
),∴f(
)为最大值
②若
≤-1即a≤-2,f(x)的最大值为f(-1)或f(
)
∵f(-1)-f(
)=(-1-a)-
(
-a)=-
-![]()
当a≤
时,f(1)≥f(
)
当
≤a≤-2时,f(-1)≤f(
)
综上可知:![]()
科目:高中数学 来源:2013届浙江省余姚中学高三上学期期中考试文科数学试卷(带解析) 题型:解答题
(本题满分15分)已知点
(0,1),
,直线
、
都是圆
的切线(
点不在
轴上).
(Ⅰ)求过点
且焦点在
轴上的抛物线的标准方程;
(Ⅱ)过点(1,0)作直线
与(Ⅰ)中的抛物线相交于![]()
两点,问是否存在定点
使
为常数?若存在,求出点
的坐标及常数;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省桐乡市高三10月月考理科数学 题型:解答题
(本题满分15分)已知函数
.
(Ⅰ)若
为定义域上的单调函数,求实数m的取值范围;
(Ⅱ)当
时,求函数
的最大值;
(Ⅲ)当
,且
时,证明:
.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省桐乡市高三下学期2月模拟考试文科数学 题型:解答题
(本题满分15分)已知圆N:
和抛物线C:
,圆的切线
与抛物线C交于不同的两点A,B,
(1)当直线
的斜率为1时,求线段AB的长;
(2)设点M和点N关于直线
对称,问是否存在直线
使得
?若存在,求出直线
的方程;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源:杭州市2010年第二次高考科目教学质量检测 题型:解答题
(本题满分15分)已知直线
,曲线![]()
(1)若
且直线与曲线恰有三个公共点时,求实数
的取值;
(2)若
,直线与曲线M的交点依次为A,B,C,D四点,求|AB+|CD|的取值范围。[来源:Z+xx+k.Com]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com