精英家教网 > 高中数学 > 题目详情
1.已知△ABC的内角A,B,C所对的边分别为a,b,c,∠A=60°,∠B=45°,a=3,则b=$\sqrt{6}$.

分析 由已知利用正弦定理即可解得b的值.

解答 解:∵∠A=60°,∠B=45°,a=3,
∴由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,可得:b=$\frac{asinB}{sinA}$=$\frac{3×\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=$\sqrt{6}$.
故答案为:$\sqrt{6}$.

点评 本题主要考查了正弦定理在解三角形中的简单应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设随机变量X~B(4,$\frac{1}{3}$),则E(X)=$\frac{4}{3}$,D(3X+2)=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤a}\\{{x}^{2}+2x,x>a}\end{array}\right.$,若存在实数b,使函数g(x)=f(x)十b有两个零点,则a的取值范围是(  )
A.(-∞,-1)∪(-1,0)∪(2,+∞)B.(-∞,-2)∪(-1,0)∪(1,+∞)C.(-∞,0)∪(1,+∞)D.(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.1-2sin267.5°=$-\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.摇奖器中有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这些小球上记号之和,如果参加此次摇奖,求获得所有可能奖金数及相应的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.sin215°-cos215°的值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,若a1=2,n•an+1=Sn+n2+n,n∈N*
(1)求证:{$\frac{{S}_{n}}{n}$}是等差数列;
(2)求数列{2n-1•an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=BC=2CD=2,AD=$\sqrt{3}$,PE=2BE.
(1)求证:平面PAD⊥平面PCD;
(2)若二面角P-AC-E的大小为45°,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}满足a1a2…an=n+1,则a3=$\frac{4}{3}$;若数列{bn}满足bn=$\frac{{a}_{n}}{(n+1)^{2}}$,Sn为数列{bn}的前n项和,则Sn=$\frac{n}{n+1}$.

查看答案和解析>>

同步练习册答案