精英家教网 > 高中数学 > 题目详情
已知双曲线C的左右焦点为F1,F2,其中一条渐近线为y=
3
x,点A在双曲线C上,若|F1A|=2|F2A|,则cos∠AF2F1=(  )
A、
1
4
B、
1
3
C、
2
4
D、
2
3
考点:双曲线的简单性质
专题:计算题,解三角形,直线与圆,圆锥曲线的定义、性质与方程
分析:由已知得渐近线的斜率为
3
,即有b=
3
a,再求c=2a,运用双曲线的定义和条件,求得三角形AF2F1的三边,再由余弦定理,即可得到所求值.
解答: 解:由于双曲线的一条渐近线y=
b
a
x,且为y=
3
x,则斜率为
3

即有b=
3
a,c=
a2+b2
=2a,
|F1A|=2|F2A|,且由双曲线的定义,可得|F1A|-|F2A|=2a,
解得,|F1A|=4a,|F2A|=2a,
又|F1F2|=2c,由余弦定理,可得
cos∠AF2F1=
|AF2|2+|F1F2|2-|AF1|2
2|AF2|•|F1F2|
=
4a2+4×4a2-16a2
2×2a×4a
=
1
4

故选A.
点评:本题考查双曲线的定义和性质,考查余弦定理的运用,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算:
1-sin24°
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x+4
(1)证明:函数y=f(x)在[1,+∞)上为增函数;
(2)证明:方程f(x)=0没有大于1的根.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x-
π
6
)-
1
2
sin2x,g(x)=sinxcosx.
(1)若α∈(0,
π
2
),且f(
α
2
)=
3
3
10
,求f(x)的最小正周期和g(α)的值;
(2)求函数y=g(x)-f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)(1)求证:当a>2时,
a+2
+
a-2
<2
a

(2)已知x∈R,a=x2+
1
2
,b=2-x,c=x2-x+1,试证明a,b,c至少有一个不小于1.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则它的体积为(  )
A、
3
2
B、
1
2
C、
3
2
D、
3
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

数列an=
1
n(n+1)
,其前n项之和为
9
10
,则n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:|3x-4|>2;q:x2-x-2>0,则¬p是¬q的什么条件?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

与向量
a
=(1,2,3),
b
=(3,1,2)都垂直的向量为(  )
A、(1,7,5)
B、(1,-7,5)
C、(-1,-7,5)
D、(1,-7,-5)

查看答案和解析>>

同步练习册答案