精英家教网 > 高中数学 > 题目详情
数列an=
1
n(n+1)
,其前n项之和为
9
10
,则n=
 
考点:数列的求和
专题:点列、递归数列与数学归纳法
分析:把数列的通项公式列项,求得数列的前n项和,由前n项和等于
9
10
求得n的值.
解答: 解:∵an=
1
n(n+1)
=
1
n
-
1
n+1

Sn=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1
)

=1-
1
n+1
=
n
n+1

n
n+1
=
9
10
,解得:n=9.
故答案为:9.
点评:本题考查了用裂项相消法求数列的前n项和,关键是正确列项,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b,c均为非零实数,集合A={x|x=
|a|
a
+
b
|b|
+
ab
|ab|
},则集合A的元素的个数为(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥曲线C:
x=2cosα
y=
3
sinα
(α为参数)和定点A(0,
3
),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.
(1)求直线AF2的直角坐标方程;
(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|-|NF1||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的左右焦点为F1,F2,其中一条渐近线为y=
3
x,点A在双曲线C上,若|F1A|=2|F2A|,则cos∠AF2F1=(  )
A、
1
4
B、
1
3
C、
2
4
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x2+y2+xy=2,则x+2y的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin
x
2
cos
x
2
+cos2
x
2
-1.
(1)求值f(
π
3
);
(2)求函数f(x)的最小正周期及最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若ξ是离散型随机变量,则E(ξ-E(ξ))的值为(  )
A、E(ξ)
B、0
C、(E(ξ))2
D、2E(ξ)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an},公差d<0,设bn=(
1
2
 an,又已知b1+b2+b3=
21
8
,b1•b2•b3=
1
8

(1)求证:数列{bn}是等比数列;
(2)求等差数列{an}的通项an

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
2
-
1
2x+1
,求证:函数f(x)为奇函数.

查看答案和解析>>

同步练习册答案