精英家教网 > 高中数学 > 题目详情
如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.
解.(1)如图建系,设椭圆方程为,则c=1
又∵即(a+c)(a﹣c)=1=a2﹣c2
∴a2=2
故椭圆方程为
(2)假设存在直线l交椭圆于P,Q两点,且F恰为△PQM的垂心,
则设P(x1,y1),Q(x2,y2),
∵M(0,1),F(1,0),
故kPQ=1,
于是设直线l为y=x+m,
得3x2+4mx+2m2﹣2=0

又yi=xi+m(i=1,2)
得x1(x2﹣1)+(x2+m)(x1+m﹣1)=0
即2x1x2+(x1+x2)(m﹣1)+m2﹣m=0
由韦达定理得
解得或m=1(舍)
经检验符合条件
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且
AF
FB
=1
|
OF
|=1

(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆长轴端点为,为椭圆中心,为椭圆的右焦点,

.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)如图,椭圆长轴端点为,为椭圆中心,  为椭圆的右焦点,且.(1)求椭圆的标准方程;(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?

若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届山东省济宁市高二12月质检文科数学试卷(解析版) 题型:解答题

(本题满分12分)

如图,椭圆长轴端点为为椭圆中心,为椭圆的右焦点,

,.

(1)求椭圆的标准方程;

(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省温州市高三五校联考数学理卷 题型:解答题

(本题满分15分)

如图,椭圆长轴端点为为椭圆中心,为椭圆的右焦点,且

(1)求椭圆的标准方程;

(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案