精英家教网 > 高中数学 > 题目详情

已知{an}是等差数列.

(1)前四项和为21,末四项和为67,且各项和为286,求项数;

(2)Sn=20,S2n=38,求S3n

(3)若两个等差数列的前n项的和之比是(7n+1)∶(4n+27),求它们的第11项之比.

答案:
解析:

  思路  (1)由a1+an=a2+an-1=a3+an-2=

  思路  (1)由a1+an=a2+an-1=a3+an-2=……,得a1+an=22,进而求n.

  (2)由Sn,S2n-Sn,S3n-S2n成等差可求.

  解答  (1)依题意,a1+a2+a3+a4=21,

  an-3+an-2+an-1+an=67,

  ∴a1+a2+a3+a4+an-3+an-1+an=99

  ∴a1+an=22.

  ∵Sn=286,

  ∴n=26.

  (2)∵Sn,S2n-Sn,S3n-S2n成等差数列,

  ∴S3n=3(S2n-Sn)=54.

  (3)设数列{an}的前n项和Sn,数列{bn}的前n项和为

  则有a11,b11

  ∴


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数{an}的前n项和,已知S6=36,Sn=324,若Sn-6=144(n>6),则n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知满足:
(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

同步练习册答案