精英家教网 > 高中数学 > 题目详情

已知动直线与圆

 (1) 求证:无论为何值,直线与圆总相交.

(2) 为何值时,直线被圆所截得的弦长最小?并求出该最小值.

 

(1)证明 方法一 设圆心C(3,4)到动直线l的距离为d,则

d=

∴当m=-时,dmax<3(半径).

故动直线l总与圆C相交.

方法二 直线l变形为m(x-y+1)+(3x-2y)=0.

解得

如图所示,故动直线l恒过定点A(2,3).

而AC=<3(半径).

∴点A在圆内,故无论m取何值,直线l与圆C总相交.

(2)解 由平面几何知识知,弦心距越大,弦长越小,即当AC垂直直线l时,弦长最小.

∴最小值为2=2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.

(1)求轨迹E的方程,并说明该方程所表示曲线的形状; w.w.w.k.s.5.u.c.o.m    

(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;

(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009山东卷文) (本小题满分14分)

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.

(1)求轨迹E的方程,并说明该方程所表示曲线的形状;      

(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;

(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.

(1)求轨迹E的方程,并说明该方程所表示曲线的形状;    

(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;

(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中数学 来源:2014届四川省高二4月数学试卷(解析版) 题型:解答题

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.

(1)求轨迹E的方程,并说明该方程所表示曲线的形状;

(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;

(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

 

查看答案和解析>>

同步练习册答案