精英家教网 > 高中数学 > 题目详情
求曲线y=2x3-3x2+6x-1分别在x=1及x=-1处两切线的夹角.

解:y′=6x2-6x+6,y′|x=1=6,y′|x=-1=18.设夹角为α,则tanα=||=,

∴α=arctan.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x3-3x2+3.
(1)求曲线y=f(x)在点x=2处的切线方程;
(2)若关于x的方程f(x)+m=0有三个不同的实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x3-3x2+3.
(1)求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若关于x的方程f(x)+m=0有三个不同的实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x3-3x2+3
(1)求曲线y=f(x)在点x=2处的切线方程;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省青岛二中高二(下)期中数学试卷(文科)(解析版) 题型:解答题

已知函数f(x)=2x3-3x2+3.
(1)求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若关于x的方程f(x)+m=0有三个不同的实根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案