精英家教网 > 高中数学 > 题目详情
若n<0,m>0,且m+n>0,则下列不等式中成立的是(  )
分析:由m+n>0,可得n>-m,m>-n.又n<0,可得n<-n.即可得出.
解答:解:∵m+n>0,∴n>-m,m>-n.
∵n<0,∴n<-n.
∴-m<n<-n<m.
故选:A.
点评:本题考查了不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+mx+nlnx(x>0,实数m,n为常数).
(1)若n+3m2=0(m>0),且函数f(x)在x∈[1,+∞)上的最小值为0,求m的值;
(2)若对于任意的实数a∈[1,2],b-a=1,函数f(x)在区间(a,b)上总是减函数,对每个给定的n,求m的最大值h(n).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+mx+nlnx(x>0,实数m,n为常数).若n+3m2=0(m>0),且函数f(x)在x∈[1,+∞)上的最小值为0,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+mx+nlnx(x>0,实数m,n为常数).
(1)若n+3m2=0(m>0),且函数f(x)在x∈[1,+∞)上的最小值为0,求m的值;
(2)若对于任意的实数a∈[1,2],b-a=1,函数f(x)在区间(a,b)上总是减函数,对每个给定的n,求m的最大值h(n).

查看答案和解析>>

科目:高中数学 来源:2010年江苏省南京市高三数学综合训练试卷(11)(解析版) 题型:解答题

已知函数f(x)=x2+mx+nlnx(x>0,实数m,n为常数).
(1)若n+3m2=0(m>0),且函数f(x)在x∈[1,+∞)上的最小值为0,求m的值;
(2)若对于任意的实数a∈[1,2],b-a=1,函数f(x)在区间(a,b)上总是减函数,对每个给定的n,求m的最大值h(n).

查看答案和解析>>

同步练习册答案