精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+mx+nlnx(x>0,实数m,n为常数).
(1)若n+3m2=0(m>0),且函数f(x)在x∈[1,+∞)上的最小值为0,求m的值;
(2)若对于任意的实数a∈[1,2],b-a=1,函数f(x)在区间(a,b)上总是减函数,对每个给定的n,求m的最大值h(n).
分析:(1)先求导,求函数在已知区间上的极值,注意极值点是否在定义域内,进行分类讨论,确定最值;(2)函数在区间上单调递减,转化为导函数小于等于0恒成立,再转化为二次函数根的分布问题.
解答:解:(1)当n+3m2=0时,f(x)=x2+mx-3m2lnx.
f′(x)=2x+m-
3m2
x
=
2x2+mx-3m2
x
=
(2x+3m)(x-m)
x

令f′(x)=0,得x=-
3m
2
(舍),x=m.(3分)
①当m>1时,
精英家教网
∴当x=m时,fmin(x)=2m2-3m2lnm.
令2m2-3m2lnm=0,得m=e
2
3
.(5分)
②当0<m≤1时,f′(x)≥0在x∈[1,+∞)上恒成立,
f(x)在x∈[1,+∞)上为增函数,当x=1时,fmin(x)=1+m.
令m+1=0,得m=-1(舍).综上所述,所求m为m=e
2
3
.(7分)
(2)∵对于任意的实数a∈[1,2],b-a=1,
f(x)在区间(a,b)上总是减函数,则对于x∈(1,3),
f′(x)=2x+m+
n
x
=
2x2+mx+n
x
<0,
∴f′(x)≤0在区间[1,3]上恒成立.(9分)
设g(x)=2x2+mx+n,∵x>0,
∴g(x)≤0在区间[1,3]上恒成立.
由g(x)二次项系数为正,得
g(1)≤0
g(3)≤0

m+n+2≤0
3m+n+18≤0
亦即
m≤-n-2
m≤-
n
3
-6.
(12分)
∵(-n-2)-(-
n
3
-6)
=4-
2n
3
=-
2
3
(n-6)

∴当n<6时,m≤-
n
3
-6
,当n≥6时,m≤-n-2,(14分)
∴当n<6时,h(n)=-
n
3
-6

当n≥6时,h(n)=-n-2,即h(n)=
-
n
3
-6,n<6
-n-2,n≥6.
(16分)
点评:(1)利用导数求函数的最值问题,体现了分类讨论的数学思想,是难点;(2)题意的理解与转化是难点,在解答此题中用到了数形结合的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案