精英家教网 > 高中数学 > 题目详情
给出下列四个命题:
①“x(x-3)<0成立”是“|x-1|<2成立”的必要不充分条件;
②抛物线x=ay2(a≠0)的焦点为(0,);
③函数f(x)=ax2-lnx的图象在x=1处的切线平行于y=x,则(,+∞)是f(x)的单调递增区间;
(a>0),则=3.
其中正确命题的序号是    (请将你认为是真命题的序号都填上).
【答案】分析:①利用充分条件必要条件的定义进行判断.②利用抛物线的性质进行判断.③利用导数的几何意义以及导数的应用判断.④利用指数幂的运算和对数的运算进行求值.
解答:解:①由x(x-3)<0得0<x<3,由|x-1|<2得-2<x-1<2,解得-1<x<3,所以“x(x-3)<0成立”是“|x-1|<2成立”的充分不必要条件所以①错误.
②抛物线的标准方程为,所以对应的焦点坐标为,所以②错误.
③函数的定义域为(0,+∞),函数的导数为,所以f'(1)=2a-1,因为函数f(x)=ax2-lnx的图象在x=1处的切线平行于y=x,
则f'(1)=2a-1=1,解得a=1,此时f(x)=x2-lnx,,由,解得x,即函数的单调增区间为(,+∞),所以③正确.
④由(a>0),得,所以,所以④正确.
故答案为:③④.
点评:本题主要考查命题的真假判断,涉及的知识点较多,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:
①若a⊥α,a⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若α∥β,a?α,b?β,则a∥b;
④若α∥β,α∩γ=a,β∩γ=b,则a∥b.
其中正确命题的序号有
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=
1
x
的单调减区间是(-∞,0)∪(0,+∞);
②函数y=x2-4x+6,当x∈[1,4]时,函数的值域为[3,6];
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,则A∩B=A.
其中正确命题的序号是
③④⑤
③④⑤
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为2,锐角为60°的菱形ABCD沿较短对角线BD折成二面角A-BD-C,点E,F分别为AC,BD的中点,给出下列四个命题:
①EF∥AB;②直线EF是异面直线AC与BD的公垂线;③当二面角A-BD-C是直二面角时,AC与BD间的距离为
6
2
;④AC垂直于截面BDE.
其中正确的是
②③④
②③④
(将正确命题的序号全填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中正确的命题的个数为(  )
①命题“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函数y=tan
x
2
的对称中心为(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函数;
④函数y=(x-1)2与y=2x-1在区间[0,+∞)上都是增函数,其中正确命题的序号是(  )

查看答案和解析>>

同步练习册答案