精英家教网 > 高中数学 > 题目详情
2、给出下列四个命题:
①命题“若X2=1,则x=1”的否命题为:“若:x2=1,则x≠0”;
②命题“?x∈R,x2+x-1<0”的否定是“?x∈R,x2+x-1>0”;
③命题“若:x=y,则sinx=siny”的逆否命题为真命题;
④“x=-1”是“x2-5x-6=0的必要不充分条件.
其中真命题的个数是(  )
分析:①根据否命题的定义:如果两个命题中一个命题的条件和结论分别是另一个命题的条件和结论的否定,则这两个命题称互为否命题,把题中条件与结论互换;
②根据否命题的定义把小于改为大于等于;
③利用三角函数的知识看x=y与sinx=siny是否能够互相,判断原命题的真假,从而得出其逆否命题的真假;
④解出方程x2-5x-6=0的根,再判断其与x=-1的逻辑关系;
解答:解:①若x2=1,则x=1”的否命题:若为x=1则x2=1;故①错误;
②命题“?x∈R,x2+x-1<0”的否定是“?x∈R,x2+x-1≥0”,故②错误;
③∵x=y?sinx=siny,
反之如果sinx=siny,则x=y+kπ(k∈Z),
∴原命题是真命题,∴原命题的逆否命题为真命题,故③正确;
④∵x2-5x-6=0,∴(x+1)(x-6)=0,
解得x=-1或6,
∴x=-1?x=-1或6,反之则不能,
∴“x=-1”是“x2-5x-6=0的充分不必要条件,故④错误.
∴真命题的个数是 1,
故选A.
点评:此题考查的知识面比较广,主要考查四种逻辑关系,解题的关键是将各个命题的内容具体化使之成为简单的命题,然后再求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:
①若a⊥α,a⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若α∥β,a?α,b?β,则a∥b;
④若α∥β,α∩γ=a,β∩γ=b,则a∥b.
其中正确命题的序号有
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=
1
x
的单调减区间是(-∞,0)∪(0,+∞);
②函数y=x2-4x+6,当x∈[1,4]时,函数的值域为[3,6];
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,则A∩B=A.
其中正确命题的序号是
③④⑤
③④⑤
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为2,锐角为60°的菱形ABCD沿较短对角线BD折成二面角A-BD-C,点E,F分别为AC,BD的中点,给出下列四个命题:
①EF∥AB;②直线EF是异面直线AC与BD的公垂线;③当二面角A-BD-C是直二面角时,AC与BD间的距离为
6
2
;④AC垂直于截面BDE.
其中正确的是
②③④
②③④
(将正确命题的序号全填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中正确的命题的个数为(  )
①命题“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函数y=tan
x
2
的对称中心为(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函数;
④函数y=(x-1)2与y=2x-1在区间[0,+∞)上都是增函数,其中正确命题的序号是(  )

查看答案和解析>>

同步练习册答案