精英家教网 > 高中数学 > 题目详情
过点P(1,0)作曲线C:y=x2(x∈(0,+∞)的切线,切点为M1,设M1在x轴上的投影是点P1.又过点P1作曲线C的切线,切点为M2,设M2在x轴上的投影是点P2,….依此下去,得到一系列点M1,M2…,Mn,…,设它们的横坐标a1,a2,…,an,…,构成数列为{an}.
(1)求证数列{an}是等比数列,并求其通项公式;
(2)令bn=
nan
,求数列{bn}的前n项和Sn
分析:(1)要证数列{an}是等比数列,只需证明数列{an}的后一项比前一项是常数即可,可先对y=x2求导数,y=x2在切点处的导数,就是在该点处的切线的斜率,求出切线方程,就可找到切点在x轴上的投影的横坐标,再求相邻横坐标之商,看是否为常数,就可证出数列{an}是等比数列,再根据等比数列的通项公式求数列{an}的通项公式即可.
(2)根据(1)中所求数列{an}的通项公式求出数列{bn}的通项公式,再用错位相减求前n项和Sn
解答:解:(1)对y=x2求导数,得y'=2x,切点是Mn(an,an2)的切线方程是y-an2=2an(x-an).(2分)
当n=1时,切线过点P(1,0),即0-a12=2a1(1-a1),得a1=2;
当n>1时,切线过点Pn-1(an-1,0),即0-
a
2
n
=2an(an-1-an),得
an
an-1
=2

所以数列{an}是首项a1=2,公比为2的等比数列.
所以数列{an}的通项公式为an=2n,n∈N*(6分)
(2)∵bn=
n
an
,an=2n,∴bn=
n
2n

Sn=
1
21
+
2
22
+
3
23
+…+
n
2n
            ①
2Sn=
1
22
+
2
23
+…+
n-1
2n
+
n
2n+1
   ②
①-②,得-Sn=
1
2
+
1
22
+
1
23
+…+
1
2n
-
n
2n+1
=
1
2
(1-
1
2n
)
1-
1
2
-
n
2n+1
=1-
1
2n
-
n
2n+1
=1-
3
2n+1
点评:本题考查了等比数列的证明,以及错位相减求和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,过点P(1,0)作曲线C:y=xk(x∈(0,+∞),k∈N*,k>1)的切线,切点为Q1,设Q1点在x轴上的投影是点P1;又过点P1作曲线C的切线,切点为Q2,设Q2在x轴上的投影是P2;…;依此下去,得到一系列点Q1,Q2,…,Qn,…,设点Qn的横坐标为an
(Ⅰ)试求数列{an}的通项公式an;(用k的代数式表示)
(Ⅱ)求证:an≥1+
n
k-1

(Ⅲ)求证:
n
i=1
i
ai
k2-k
(注:
n
i=1
ai=a1+a2+…+an
).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•锦州一模)过点P(1,0)作曲线C:y=x2(x>0)的切线,切点为Q1,没Q1在x轴上的投影是P1,又过P1,作曲线C的切线,切点为Q2,设Q2在x轴上的投影是P2…,依次下去,得到一系列点Q1Q2,…Qn,设Qn的横坐标为an
(I)求a1的值及{an}的通项公式;
(Ⅱ)令bn=
an(an-1)(an+1-1)
,设数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)如图,过点P(1,0)作曲线C:y=x2(x∈(0,+∞))的切线,切点为Q1,设点Q1在x轴上的投影是点P1;又过点P1作曲线C的切线,切点为Q2,设Q2在x轴上的投影是P2;…;依此下去,得到一系列点Q1,Q2,Q3-Qn,设点Qn的横坐标为an
(1)求直线PQ1的方程;
(2)求数列{an}的通项公式;
(3)记Qn到直线PnQn+1的距离为dn,求证:n≥2时,
1
d1
+
1
d2
+…
1
dn
>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(1,0)作曲线C:y=x2(x>0)的切线,切点为M1,设点M1在x轴上的投影是点P1,又过点P1作曲线C的切线,切点为M2,设点M2在x轴上的投影是点P2,…依此下去,得到点列P1,P2,P3,…,记它们的横坐标a1,a2,a3,…构成数列{an}.
(Ⅰ)求an与an-1(n≥2)的关系式;
(Ⅱ)令bn=
nan
,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案