精英家教网 > 高中数学 > 题目详情

若直线l过点A(x1,y1),B(x2,y2),且满足条件3x1-4y1=2,3x2-4y2=2,则直线l的方程为________.

答案:
解析:

3x4y20


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的方程是
x2
a2
+
y2
b2
=1
(a>b>0),斜率为1的直线l与椭圆C交于A(x1,y1),B(x2,y2)两点.
(Ⅰ)若椭圆的离心率e=
3
2
,直线l过点M(b,0),且
OA
OB
=
32
5
cot∠AOB
,求椭圆的方程;
(Ⅱ)直线l过椭圆的右焦点F,设向量
OP
=λ(
OA
+
OB
)
(λ>0),若点P在椭圆C上,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)直线l与椭圆
y2
a2
+
x2
b2
=1(a>b>0)
交于A(x1,y1),B(x2,y2)两点,已知
m
=(ax1,by1),
n
=(ax2,by2),若
m
n
且椭圆的离心率e=
3
2
,又椭圆经过点(
3
2
,1)
,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l过椭圆的焦点F(0,c)(c为半焦距),求直线l的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C的方程
x2
a2
+
y2
b2
=1(a>b>0)
,斜率为1的直L与椭C交于A(x1,y1)B(x2,y2)两点.
(Ⅰ)若椭圆的离心率e=
3
2
,直线l过点M(b,0),且
OA
OB
=-
12
5
,求椭圆C的方程;
(Ⅱ)直线l过椭圆的右焦点F,设向量
OP
=λ(
OA
+
OB
)(λ>0),若点P在椭C上,λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)已知抛物线C:y2=2px(p>0),直线l交此抛物线于不同的两个点A(x1,y1)、B(x2,y2))
(1)当直线l过点M(-p,0)时,证明y1•y2为定值;
(2)当y1y2=-p时,直线l是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由;
(3)记N(p,0),如果直线l过点M(-p,0),设线段AB的中点为P,线段PN的中点为Q.问是否存在一条直线和一个定点,使得点Q到它们的距离相等?若存在,求出这条直线和这个定点;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案