ÏÂÁÐÃüÌâÖУº
¢Ù¼¯ºÏA={ x|0¡Üx£¼3ÇÒx¡ÊN }µÄÕæ×Ó¼¯µÄ¸öÊýÊÇ8£»
¢Ú¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2+mx+2m+1=0Ò»¸ö¸ù´óÓÚ1£¬Ò»¸ö¸ùСÓÚ1£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§m£¼-
2
3
£»
¢Ûº¯Êýf£¨x£©=x2+£¨3a+1£©x+2aÔÚ £¨-¡Þ£¬4£©ÉÏΪ¼õº¯Êý£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇa¡Ü3£»
¢ÜÒÑÖªº¯Êýy=4x-4•2x+1£¨-1¡Üx¡Ü2£©£¬Ôòº¯ÊýµÄÖµÓòΪ[-
3
4
£¬1]£»
¢Ý¶¨ÒåÔÚ£¨-1£¬0£©µÄº¯Êýf£¨x£©=log£¨2a£©£¨x+1£©Âú×ãf£¨x£©£¾0µÄaµÄÈ¡Öµ·¶Î§ÊÇ£¨0£¬
1
2
£©£»
¢Þ½«Èý¸öÊý£ºx=20.2£¬y=(
1
2
)2
£¬z=log2
1
2
£¬
°´´Ó´óµ½Ð¡ÅÅÁÐÕýÈ·µÄÊÇz£¾x£¾y£¬ÆäÖÐÕýÈ·µÄÓÐ
¢Ú¢Ý
¢Ú¢Ý
£®
·ÖÎö£º¢Ù²»ÕýÈ·£¬ÒòΪº¬Èý¸öÔªËصļ¯ºÏÆäÕæ×Ó¼¯¹²ÓÐ23-1=7 ¸ö£®¢ÚÕýÈ·£¬ÒòΪÓÉÌâÒâÖª£¬1¶ÔÓ¦µÄº¯ÊýֵСÓÚ0£¬½âµÃm£¼-
2
3
£¬
¢Û²»ÕýÈ·£¬ÒòΪÓÉ4¡Ü-
3a+1
2
½âµÃ a¡Ü-3£® 
¢Ü²»ÕýÈ·£¬ÒòΪ
1
2
¡Ü2x¡Ü4£¬º¯Êýy=£¨2x-2£©2-3£¬µ± 2x=2ʱ£¬º¯ÊýÓÐ×îСֵ-3£¬µ± 2x=4ʱ£¬º¯ÊýÓÐ×î´óÖµ 1£®
¢ÝÕýÈ·£¬ÒòΪlog£¨2a£©£¨x+1£©£¾0£¬0£¼x+1£¼1£¬¹Ê 0£¼2a£¼1£®
¢Þ²»ÕýÈ·£¬ÒòΪ 1£¼20.2£¼2£¬0£¼(
1
2
)2
£¼1£¬log2
1
2
£¼0£¬¹Êx£¾y£¾z£®
½â´ð£º½â£º¢Ù²»ÕýÈ·£¬ÒòΪ¼¯ºÏAÖк¬ÓÐ0¡¢1¡¢2Èý¸öÔªËØ£¬ÆäËùÓÐ×Ó¼¯¹²8¸ö£¬ÆäÖÐÕæ×Ó¼¯ÓÐ7¸ö£®
¶ÔÓÚ¢Ú£¬¡ß¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2+mx+2m+1=0Ò»¸ö¸ù´óÓÚ1£¬Ò»¸ö¸ùСÓÚ1£¬Áîf£¨x£©=x2+mx+2m+1=0£¬
Ôòf£¨1£©=2+3m£¼0£¬¡àm£¼-
2
3
£¬¹Ê¢ÚÕýÈ·£®
¶ÔÓÚ¢Û£¬f£¨x£©=x2+£¨3a+1£©x+2aÔÚ £¨-¡Þ£¬4£©ÉÏΪ¼õº¯Êýʱ£¬4¡Ü-
3a+1
2
£¬¡àa¡Ü-3£¬¹Ê¢Û²»ÕýÈ·£®
¶ÔÓڢܣ¬º¯Êýy=4x-4•2x+1£¨-1¡Üx¡Ü2£©=£¨2x-2£©2-3£¬¡ß-1¡Üx¡Ü2£¬
1
2
¡Ü2x¡Ü4£¬
¹Êµ± 2x=2ʱ£¬º¯ÊýÓÐ×îСֵ-3£¬µ± 2x=4ʱ£¬º¯ÊýÓÐ×î´óÖµ 1£¬¹Êº¯ÊýµÄÖµÓò[-3£¬1]£¬¹Ê¢Ü²»ÕýÈ·£®
¶ÔÓڢݣ¬ÔÚ£¨-1£¬0£©Éϵĺ¯Êýf£¨x£©=log£¨2a£©£¨x+1£©Âú×ãf£¨x£©£¾0£¬¡à0£¼x+1£¼1£¬
¡à0£¼2a£¼1£¬¡à0£¼a£¼
1
2
£¬¹Ê¢ÝÕýÈ·£®
¶ÔÓÚ¢Þ£¬¡ß1£¼20.2£¼2£¬0£¼(
1
2
)2
£¼1£¬log2
1
2
£¼0£¬¹Ê x£¾y£¾z£¬¹Ê¢Þ²»ÕýÈ·£®
×ÛÉÏ£¬Ö»ÓТڢÝÕýÈ·£¬¹Ê´ð°¸Îª ¢Ú¢Ý£®
µãÆÀ£º±¾Ì⿼²éº¯ÊýµÄµ¥µ÷ÐÔºÍÖµÓò£¬Ò»Ôª¶þ´Î·½³Ì¸ùµÄ·Ö²¼£¬Í¨¹ý¾Ù·´ÀýÀ´ËµÃ÷ij¸öÃüÌâ²»ÕýÈ·£¬ÊÇÒ»ÖÖ¼òµ¥ÓÐЧµÄ·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐÃüÌâÖУº
¢Ù¼¯ºÏA={ x|0¡Üx£¼3ÇÒx¡ÊN }µÄÕæ×Ó¼¯µÄ¸öÊýÊÇ8£»
¢Ú½«Èý¸öÊý£ºx=20.2£¬y=(
1
2
)2
£¬z=log2
1
2
°´´Ó´óµ½Ð¡ÅÅÁÐÕýÈ·µÄÊÇz£¾x£¾y£»
¢Ûº¯Êýf£¨x£©=x2+£¨3a+1£©x+2aÔÚ £¨-¡Þ£¬4£©ÉÏΪ¼õº¯Êý£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇa¡Ü-3£»
¢ÜÒÑÖªº¯Êýy=4x-4•2x+1£¨-1¡Üx¡Ü2£©£¬Ôòº¯ÊýµÄÖµÓòΪ[-
3
4
£¬1]£»
¢Ý¶¨ÒåÔÚ£¨-1£¬0£©µÄº¯Êýf£¨x£©=log£¨2a£©£¨x+1£©Âú×ãf£¨x£©£¾0µÄʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ0£¼a£¼
1
2
£»
¢Þ¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2+mx+2m+1=0Ò»¸ö¸ù´óÓÚ1£¬Ò»¸ö¸ùСÓÚ1£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§m£¼-
2
3
£»
ÆäÖÐÕýÈ·µÄÓÐ
¢Û¢Ý¢Þ
¢Û¢Ý¢Þ
£¨Çë°ÑËùÓÐÂú×ãÌâÒâµÄÐòºÅ¶¼ÌîÔÚºáÏßÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2012-2013ѧÄê½­Î÷Ê¡¼ª°²ÊÐиÉÖÐѧ¸ßÒ»£¨ÉÏ£©¶Î¿¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

ÏÂÁÐÃüÌâÖУº
¢Ù¼¯ºÏA={ x|0¡Üx£¼3ÇÒx¡ÊN }µÄÕæ×Ó¼¯µÄ¸öÊýÊÇ8£»
¢Ú¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2+mx+2m+1=0Ò»¸ö¸ù´óÓÚ1£¬Ò»¸ö¸ùСÓÚ1£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§£»
¢Ûº¯Êýf£¨x£©=x2+£¨3a+1£©x+2aÔÚ £¨-¡Þ£¬4£©ÉÏΪ¼õº¯Êý£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇa¡Ü3£»
¢ÜÒÑÖªº¯Êýy=4x-4•2x+1£¨-1¡Üx¡Ü2£©£¬Ôòº¯ÊýµÄÖµÓòΪ[£¬1]£»
¢Ý¶¨ÒåÔÚ£¨-1£¬0£©µÄº¯Êýf£¨x£©=log£¨2a£©£¨x+1£©Âú×ãf£¨x£©£¾0µÄaµÄÈ¡Öµ·¶Î§ÊÇ£¨0£¬£©£»
¢Þ½«Èý¸öÊý£ºx=20.2£¬y=£¬z=£¬
°´´Ó´óµ½Ð¡ÅÅÁÐÕýÈ·µÄÊÇz£¾x£¾y£¬ÆäÖÐÕýÈ·µÄÓÐ     £®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011-2012ѧÄê½­Î÷Ê¡¼ª°²ÊÐÓÀ·á¶þÖиßÒ»£¨ÉÏ£©ÆÚÖÐÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

ÏÂÁÐÃüÌâÖУº
¢Ù¼¯ºÏA={ x|0¡Üx£¼3ÇÒx¡ÊN }µÄÕæ×Ó¼¯µÄ¸öÊýÊÇ8£»
¢Ú½«Èý¸öÊý£ºx=20.2£¬y=£¬z=°´´Ó´óµ½Ð¡ÅÅÁÐÕýÈ·µÄÊÇz£¾x£¾y£»
¢Ûº¯Êýf£¨x£©=x2+£¨3a+1£©x+2aÔÚ £¨-¡Þ£¬4£©ÉÏΪ¼õº¯Êý£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇa¡Ü-3£»
¢ÜÒÑÖªº¯Êýy=4x-4•2x+1£¨-1¡Üx¡Ü2£©£¬Ôòº¯ÊýµÄÖµÓòΪ[£¬1]£»
¢Ý¶¨ÒåÔÚ£¨-1£¬0£©µÄº¯Êýf£¨x£©=log£¨2a£©£¨x+1£©Âú×ãf£¨x£©£¾0µÄʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£»
¢Þ¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2+mx+2m+1=0Ò»¸ö¸ù´óÓÚ1£¬Ò»¸ö¸ùСÓÚ1£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§£»
ÆäÖÐÕýÈ·µÄÓР   £¨Çë°ÑËùÓÐÂú×ãÌâÒâµÄÐòºÅ¶¼ÌîÔÚºáÏßÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2012-2013ѧÄê½­Î÷Ê¡¼ª°²ÊÐиÉÖÐѧ¸ßÒ»£¨ÉÏ£©¶Î¿¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

ÏÂÁÐÃüÌâÖУº
¢Ù¼¯ºÏA={ x|0¡Üx£¼3ÇÒx¡ÊN }µÄÕæ×Ó¼¯µÄ¸öÊýÊÇ8£»
¢Ú¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2+mx+2m+1=0Ò»¸ö¸ù´óÓÚ1£¬Ò»¸ö¸ùСÓÚ1£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§£»
¢Ûº¯Êýf£¨x£©=x2+£¨3a+1£©x+2aÔÚ £¨-¡Þ£¬4£©ÉÏΪ¼õº¯Êý£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇa¡Ü3£»
¢ÜÒÑÖªº¯Êýy=4x-4•2x+1£¨-1¡Üx¡Ü2£©£¬Ôòº¯ÊýµÄÖµÓòΪ[£¬1]£»
¢Ý¶¨ÒåÔÚ£¨-1£¬0£©µÄº¯Êýf£¨x£©=log£¨2a£©£¨x+1£©Âú×ãf£¨x£©£¾0µÄaµÄÈ¡Öµ·¶Î§ÊÇ£¨0£¬£©£»
¢Þ½«Èý¸öÊý£ºx=20.2£¬y=£¬z=£¬
°´´Ó´óµ½Ð¡ÅÅÁÐÕýÈ·µÄÊÇz£¾x£¾y£¬ÆäÖÐÕýÈ·µÄÓÐ     £®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸