精英家教网 > 高中数学 > 题目详情
设直线2x-y+1=0与椭圆
x2
3
+
y2
4
=1
相交于A、B两点.
(1)线段AB中点M的坐标及线段AB的长;
(2)已知椭圆具有性质:设A、B是椭圆
x2
a2
+
y2
b2
=1
上的任意两点,M是线段AB的中点,若直线AB、OM的斜率都存在,并记为kAB,kOM,则kAB?kOM为定值.试对双曲线
x2
a2
-
y2
b2
=1
写出具有类似特性的性质,并加以证明.
(1)设A(x1,y1)、B(x2,y2),则
2x-y+1=0
x2
3
+
y2
4
=1
?
4
3
x2+x-
3
4
=0
?
x1+x2=-
3
4
x1x2=-
9
16
(2分)
所以M(-
3
8
1
4
)

|AB|=
1+22
x1-x2|
=
5
(x1+x2)2-4x1x2
=
15
4

(2)设A、B是双曲线
x2
a2
-
y2
b2
=1
上的任意两点,M是线段AB的中点,若直线AB、OM的斜率都存在,并记为kAB,kOM,则kAB?kOM为定值.
证明:设A(x1,y1)、B(x2,y2),分别代入双曲线
x2
a2
-
y2
b2
=1
,再相减后可得:
1
a2
(x1+x2)(x1-x2)
-
1
b2
(y1+y2)(y1-y2)
=0
设M(x0,y0),则
x1+x2=2x0
y1+y2=2y0
,代入上式可得
y1-y2
x1-x2
=
b2
a2
×
x0
y0

即kAB?kOM=
b2
a2

∴定值为
b2
a2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知矩阵M=
0
1
1
0
N=
0
1
-1
0
.在平面直角坐标系中,设直线2x-y+1=0在矩阵MN对应的变换作用下得到的曲线F,求曲线F的方程.
(2)在极坐标系中,已知圆C的圆心坐标为C (2,
π
3
),半径R=
5
,求圆C的极坐标方程.
(3)已知a,b为正数,求证:
1
a
+
4
b
9
a+b

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南京一模)选修4-2:矩阵与变换
已知矩阵M=
01
10
N=
0-1
10
.在平面直角坐标系中,设直线2x-y+1=0在矩阵MN对应的变换作用下得到曲线F,求曲线F的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•宝山区一模)设直线2x-y+1=0与椭圆
x2
3
+
y2
4
=1
相交于A、B两点.
(1)线段AB中点M的坐标及线段AB的长;
(2)已知椭圆具有性质:设A、B是椭圆
x2
a2
+
y2
b2
=1
上的任意两点,M是线段AB的中点,若直线AB、OM的斜率都存在,并记为kAB,kOM,则kAB?kOM为定值.试对双曲线
x2
a2
-
y2
b2
=1
写出具有类似特性的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省南京市六合高级中学高三(上)数学寒假作业(4)(解析版) 题型:解答题

选修4-2:矩阵与变换
已知矩阵.在平面直角坐标系中,设直线2x-y+1=0在矩阵MN对应的变换作用下得到曲线F,求曲线F的方程.

查看答案和解析>>

同步练习册答案