£¨2013•¾£ÃÅÄ£Ä⣩Èçͼ£¬ÒÑÖªÖ±ÏßOP1£¬OP2Ϊ˫ÇúÏßE£º
x2
a2
-
y2
b2
=1
µÄ½¥½üÏߣ¬¡÷P1OP2µÄÃæ»ýΪ
27
4
£¬ÔÚË«ÇúÏßEÉÏ´æÔÚµãPΪÏß¶ÎP1P2µÄÒ»¸öÈýµÈ·Öµã£¬ÇÒË«ÇúÏßEµÄÀëÐÄÂÊΪ
13
2
£®
£¨1£©ÈôP1¡¢P2µãµÄºá×ø±ê·Ö±ðΪx1¡¢x2£¬Ôòx1¡¢x2Ö®¼äÂú×ãÔõÑùµÄ¹ØÏµ£¿²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨2£©ÇóË«ÇúÏßEµÄ·½³Ì£»
£¨3£©ÉèË«ÇúÏßEÉϵ͝µãM£¬Á½½¹µãF1¡¢F2£¬Èô¡ÏF1MF2Ϊ¶Û½Ç£¬ÇóMµãºá×ø±êx0µÄȡֵ·¶Î§£®
·ÖÎö£º£¨1£©ÓÉË«ÇúÏßµÄÀëÐÄÂÊ£¬½áºÏa2+b2=c2µÃµ½a£¬bµÄ¹ØÏµ£¬´Ó¶øÇó³öË«ÇúÏߵĽ¥½üÏß·½³Ì£¬½øÒ»²½Çó³öÁ½½¥½üÏ߼нǵÄÕýÏÒÖµ£¬ÓÉ¡÷P1OP2µÄÃæ»ýΪ
27
4
ÁÐʽµÃµ½P1¡¢P2µãµÄºá×ø±êx1¡¢x2Ö®¼äµÄ¹ØÏµ£»
£¨2£©Éè³öË«ÇúÏßÉÏÒ»µãP£¬ÓÉPΪÏß¶ÎP1P2µÄÒ»¸öÈýµÈ·ÖµãµÃµ½PµÄ×ø±êÓëP1¡¢P2µãµÄ×ø±êµÄ¹ØÏµ£¬½áºÏ£¨1£©ÖÐÇó³öµÄx1¡¢x2Ö®¼äµÄ¹ØÏµµÃµ½PµÄºá×Ý×ø±êµÄ¹ØÏµ£¬¼´Ë«ÇúÏßEµÄ·½³Ì£»
£¨3£©Éè³öMµãµÄ×ø±ê£¬°Ñ×Ý×ø±êÓúá×ø±ê±íʾ£¬ÓÉÏòÁ¿
MF1
£¬
MF2
µÄÊýÁ¿»ýСÓÚ0Çó½âMµãºá×ø±êx0µÄȡֵ·¶Î§£®
½â´ð£º½â£º£¨1£©Ë«ÇúÏß·½³ÌΪ
x2
a2
-
y2
b2
=1£¬ÓÉÒÑÖªµÃ
c
a
=
13
2
£¬
¡à
c2
a2
=
13
4
£¬¼´
a2+b2
a2
=
13
4
£¬¡à
b2
a2
=
9
4
£¬¡à½¥½üÏß·½³ÌΪy=¡À
3
2
x£¬
ÔòP1£¨x1£¬
3
2
x1£©£¬P2£¨x2£¬-
3
2
x2£©£®
Éè½¥½üÏßy=
3
2
xµÄÇãб½ÇΪ¦È£¬Ôòtan¦È=
3
2
£®
¡àsin2¦È=
2tan¦È
1+tan2¦È
=
2¡Á
3
2
1+
9
4
=
12
13
£¬
¡àS¡÷P1OP2=
27
4
=
1
2
|OP1||OP2|sin2¦È=
1
2
x
2
1
+
9
4
x
2
1
x
2
2
+
9
4
x
2
2
12
13
£¬
¡àx1•x2=
9
2
£»
£¨2£©²»·ÁÉèP·Ö
P1P2
Ëù³ÉµÄ±ÈΪ¦Ë=2£¬Ë«ÇúÏßÉϵãP£¨x£¬y£©£¬Ôò
x=
x1+2x2
3
£¬y=
y1+2y2
3
=
x1-2x2
2
£®
¡àx1+2x2=3x£¬x1-2x2=2y£®
¡à£¨3x£©2-£¨2y£©2=(x1+2x2)2-(x1-2x2)2=8x1x2=36£¬
¡à
x2
4
-
y2
9
=1£®¼´ÎªË«ÇúÏßEµÄ·½³Ì£»
£¨3£©ÓÉ£¨2£©ÖªC=
13
£¬¡àF1£¨-
13
£¬0£©£¬F2£¨
13
£¬0£©£¬
ÉèM£¨x0£¬y0£©£¬Ôòy02=
9
4
x02-9
£¬
MF1
=£¨-
13
-x0£¬-y0£©£¬
MF2
=£¨
13
-x0£¬-y0£©£¬
¡à
MF1
MF2
=x02-13+y02=
13
4
x02-22£®
Èô¡ÏF1MF2Ϊ¶Û½Ç£¬Ôò
13
4
x02-22£¼0£¬
¡à|x0|£¼
2
13
286
£¬ÓÖ|x0|£¾2£¬
¡àx0µÄ·¶Î§Îª£¨-
2
13
286
£¬-2£©¡È£¨2£¬
2
13
286
£©£®
µãÆÀ£º±¾Ì⿼²éÁËË«ÇúÏߵıê×¼·½³Ì£¬¿¼²éÁËÖ±ÏߺÍÔ²×¶ÇúÏߵĹØÏµ£¬½â´ð£¨1£©µÄ·½·¨ÊÇÔËÓá÷P1OP2µÄÃæ»ýÕÒ¹ØÏµÊ½£¬ÆäÖÐÉæ¼°µ½ÀûÓÃÇк¯Êý±íʾ±¶½ÇµÄÏÒº¯Êý£¬Ñ§Éú˼άÓÐÒ»¶¨ÄѶȣ¬Çó½â£¨2£©Ê±Óõ½Á˶¨±È·Öµã¹«Ê½£¬Ñ°ÕÒPµã×ø±êÂú×ãµÄÌõ¼þ˼ά¿ç¶È½Ï´ó£®¸ÃÌâÊôÓÚÄѶȽϴóµÄÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¾£ÃÅÄ£Ä⣩ÒÑÖªÃüÌâP£ºº¯Êýf£¨x£©=£¨2a-5£©xÊÇRÉϵļõº¯Êý£®ÃüÌâQ£ºÔÚx¡Ê£¨1£¬2£©Ê±£¬²»µÈʽx2-ax+2£¼0ºã³ÉÁ¢£®ÈôÃüÌâ¡°p¡Åq¡±ÊÇÕæÃüÌ⣬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¾£ÃÅÄ£Ä⣩ÃüÌâ¡°?x¡ÊR£¬ex£¼x¡±µÄ·ñ¶¨ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¾£ÃÅÄ£Ä⣩¸´Êý
2+i
2-i
±íʾ¸´Æ½ÃæÄڵĵãλÓÚ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¾£ÃÅÄ£Ä⣩ÒÑÖªÒ»µÈ²îÊýÁеÄǰËÄÏîµÄºÍΪ124£¬ºóËÄÏîµÄºÍΪ156£¬ÓÖ¸÷ÏîºÍΪ210£¬Ôò´ËµÈ²îÊýÁй²ÓУ¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¾£ÃÅÄ£Ä⣩ÒÑÖªº¯Êýy=f£¨x£©µÄͼÏóÊÇÁ¬Ðø²»¶ÏµÄÇúÏߣ¬ÇÒÓÐÈçϵĶÔÓ¦Öµ±í
x 1 2 3 4 5 6
y 124.4 35 -74 14.5 -56.7 -123.6
Ôòº¯Êýy=f£¨x£©ÔÚÇø¼ä[1£¬6]ÉϵÄÁãµãÖÁÉÙÓУ¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸