精英家教网 > 高中数学 > 题目详情
设函数y=f(x)的定义域为,若对给定的正数K,定义则当函数时,              
2ln2+1

试题分析:因为函数,即f1(x)=
所以,
点评:中档题,在理解题意的基础上,确定分段函数的解析式,并对分段函数进行定积分计算。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

经市场调查:生产某产品需投入年固定成本为3万元,每生产万件,需另投入流动成本为万元,在年产量不足8万件时,(万元),在年产量不小于8万件时,(万元). 通过市场分析,每件产品售价为5元时,生产的商品能当年全部售完.
(1)写出年利润(万元)关于年产量(万件)的函数解析式;
(注:年利润=年销售收入固定成本流动成本)
(2)年产量为多少万件时,在这一商品的生产中所获利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求函数在下列定义域内的值域。
(1)函数y=f(x)的值域
(2)(其中)函数y=f(x)的值域。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的导函数为,且满足,则(   )
A.B.C.D.无法确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

夏季高山上温度从山脚起每升高100米,降低0.7℃,已知山顶的温度是14.1℃,山脚的温度是26℃,则山的相对高度是(    ) 米.
A.1800B.1700C.1600D.1500

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一边长为的正方形铁片,铁片的四角截去四个边长均为的小正方形,然后做成一个无盖方盒。
(1)试把方盒的容积表示为的函数;(2)多大时,方盒的容积最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在区间上有定义, 若, 都有, 则称是区间的向上凸函数;若, 都有, 则称是区间的向下凸函数. 有下列四个判断:
①若是区间的向上凸函数,则是区间的向下凸函数;
②若都是区间的向上凸函数, 则是区间的向上凸函数;
③若在区间的向下凸函数且,则是区间的向上凸函数;
④若是区间的向上凸函数,, 则有

其中正确的结论个数是(    )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(-)=       (   )
A.-     B.-        C  .  D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数的零点与函数的零点之差的      绝对值不超过,则可以是(     )
A.B.
C.D.

查看答案和解析>>

同步练习册答案